|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- import numpy as np
- import torchvision
- import time
- import math
- import os
- import copy
- import pdb
- import argparse
- import sys
- import cv2
- import skimage.io
- import skimage.transform
- import skimage.color
- import skimage
- import torch
- import model
-
- from torch.utils.data import Dataset, DataLoader
- from torchvision import datasets, models, transforms
- from dataloader import CSVDataset, collater, Resizer, AspectRatioBasedSampler, Augmenter, UnNormalizer, Normalizer, RGB_MEAN, RGB_STD
- from scipy.optimize import linear_sum_assignment
- from tracker import BYTETracker
-
-
- def write_results(filename, results):
- save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n'
- with open(filename, 'w') as f:
- for frame_id, tlwhs, track_ids, scores in results:
- for tlwh, track_id, score in zip(tlwhs, track_ids, scores):
- if track_id < 0:
- continue
- x1, y1, w, h = tlwh
- line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1), s=round(score, 2))
- f.write(line)
-
- def write_results_no_score(filename, results):
- save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n'
- with open(filename, 'w') as f:
- for frame_id, tlwhs, track_ids in results:
- for tlwh, track_id in zip(tlwhs, track_ids):
- if track_id < 0:
- continue
- x1, y1, w, h = tlwh
- line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1))
- f.write(line)
-
- def run_each_dataset(model_dir, retinanet, dataset_path, subset, cur_dataset):
- print(cur_dataset)
-
- img_list = os.listdir(os.path.join(dataset_path, subset, cur_dataset, 'img1'))
- img_list = [os.path.join(dataset_path, subset, cur_dataset, 'img1', _) for _ in img_list if ('jpg' in _) or ('png' in _)]
- img_list = sorted(img_list)
-
- img_len = len(img_list)
- last_feat = None
-
- confidence_threshold = 0.6
- IOU_threshold = 0.5
- retention_threshold = 10
-
- det_list_all = []
- tracklet_all = []
- results = []
- max_id = 0
- max_draw_len = 100
- draw_interval = 5
- img_width = 1920
- img_height = 1080
- fps = 30
-
- tracker = BYTETracker()
-
- for idx in range((int(img_len / 2)), img_len + 1):
- i = idx - 1
- print('tracking: ', i)
- with torch.no_grad():
- data_path1 = img_list[min(idx, img_len - 1)]
- img_origin1 = skimage.io.imread(data_path1)
- img_h, img_w, _ = img_origin1.shape
- img_height, img_width = img_h, img_w
- resize_h, resize_w = math.ceil(img_h / 32) * 32, math.ceil(img_w / 32) * 32
- img1 = np.zeros((resize_h, resize_w, 3), dtype=img_origin1.dtype)
- img1[:img_h, :img_w, :] = img_origin1
- img1 = (img1.astype(np.float32) / 255.0 - np.array([[RGB_MEAN]])) / np.array([[RGB_STD]])
- img1 = torch.from_numpy(img1).permute(2, 0, 1).view(1, 3, resize_h, resize_w)
- scores, transformed_anchors, last_feat = retinanet(img1.cuda().float(), last_feat=last_feat)
-
- if idx > (int(img_len / 2)):
- idxs = np.where(scores > 0.1)
- # run tracking
- online_targets = tracker.update(transformed_anchors[idxs[0], :4], scores[idxs[0]])
- online_tlwhs = []
- online_ids = []
- online_scores = []
- for t in online_targets:
- tlwh = t.tlwh
- tid = t.track_id
- online_tlwhs.append(tlwh)
- online_ids.append(tid)
- online_scores.append(t.score)
- results.append((idx, online_tlwhs, online_ids, online_scores))
-
- fout_tracking = os.path.join(model_dir, 'results', cur_dataset + '.txt')
- write_results(fout_tracking, results)
-
-
-
- def main(args=None):
- parser = argparse.ArgumentParser(description='Simple script for testing a CTracker network.')
- parser.add_argument('--dataset_path', default='/dockerdata/home/jeromepeng/data/MOT/MOT17/', type=str,
- help='Dataset path, location of the images sequence.')
- parser.add_argument('--model_dir', default='./trained_model/', help='Path to model (.pt) file.')
- parser.add_argument('--model_path', default='./trained_model/model_final.pth', help='Path to model (.pt) file.')
- parser.add_argument('--seq_nums', default=0, type=int)
-
- parser = parser.parse_args(args)
-
- if not os.path.exists(os.path.join(parser.model_dir, 'results')):
- os.makedirs(os.path.join(parser.model_dir, 'results'))
-
- retinanet = model.resnet50(num_classes=1, pretrained=True)
- # retinanet_save = torch.load(os.path.join(parser.model_dir, 'model_final.pth'))
- retinanet_save = torch.load(os.path.join(parser.model_path))
-
- # rename moco pre-trained keys
- state_dict = retinanet_save.state_dict()
- for k in list(state_dict.keys()):
- # retain only encoder up to before the embedding layer
- if k.startswith('module.'):
- # remove prefix
- state_dict[k[len("module."):]] = state_dict[k]
- # delete renamed or unused k
- del state_dict[k]
-
- retinanet.load_state_dict(state_dict)
-
- use_gpu = True
-
- if use_gpu: retinanet = retinanet.cuda()
-
- retinanet.eval()
- seq_nums = []
- if parser.seq_nums > 0:
- seq_nums.append(parser.seq_nums)
- else:
- seq_nums = [2, 4, 5, 9, 10, 11, 13]
-
- for seq_num in seq_nums:
- run_each_dataset(parser.model_dir, retinanet, parser.dataset_path, 'train', 'MOT17-{:02d}'.format(seq_num))
-
-
- # for seq_num in [1, 3, 6, 7, 8, 12, 14]:
- # run_each_dataset(parser.model_dir, retinanet, parser.dataset_path, 'test', 'MOT17-{:02d}'.format(seq_num))
-
- if __name__ == '__main__':
- main()
|