|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- # ByteTrack-CPP-ncnn
-
- ## Installation
-
- Clone [ncnn](https://github.com/Tencent/ncnn) first, then please following [build tutorial of ncnn](https://github.com/Tencent/ncnn/wiki/how-to-build) to build on your own device.
-
- Install eigen-3.3.9 [[google]](https://drive.google.com/file/d/1rqO74CYCNrmRAg8Rra0JP3yZtJ-rfket/view?usp=sharing), [[baidu(code:ueq4)]](https://pan.baidu.com/s/15kEfCxpy-T7tz60msxxExg).
-
- ```shell
- unzip eigen-3.3.9.zip
- cd eigen-3.3.9
- mkdir build
- cd build
- cmake ..
- sudo make install
- ```
-
- ## Generate onnx file
- Use provided tools to generate onnx file.
- For example, if you want to generate onnx file of bytetrack_s_mot17.pth, please run the following command:
- ```shell
- cd <ByteTrack_HOME>
- python3 tools/export_onnx.py -f exps/example/mot/yolox_s_mix_det.py -c pretrained/bytetrack_s_mot17.pth.tar
- ```
- Then, a bytetrack_s.onnx file is generated under <ByteTrack_HOME>.
-
- ## Generate ncnn param and bin file
- Put bytetrack_s.onnx under ncnn/build/tools/onnx and then run:
-
- ```shell
- cd ncnn/build/tools/onnx
- ./onnx2ncnn bytetrack_s.onnx bytetrack_s.param bytetrack_s.bin
- ```
-
- Since Focus module is not supported in ncnn. Warnings like:
- ```shell
- Unsupported slice step !
- ```
- will be printed. However, don't worry! C++ version of Focus layer is already implemented in src/bytetrack.cpp.
-
- ## Modify param file
- Open **bytetrack_s.param**, and modify it.
- Before (just an example):
- ```
- 235 268
- Input images 0 1 images
- Split splitncnn_input0 1 4 images images_splitncnn_0 images_splitncnn_1 images_splitncnn_2 images_splitncnn_3
- Crop Slice_4 1 1 images_splitncnn_3 467 -23309=1,0 -23310=1,2147483647 -23311=1,1
- Crop Slice_9 1 1 467 472 -23309=1,0 -23310=1,2147483647 -23311=1,2
- Crop Slice_14 1 1 images_splitncnn_2 477 -23309=1,0 -23310=1,2147483647 -23311=1,1
- Crop Slice_19 1 1 477 482 -23309=1,1 -23310=1,2147483647 -23311=1,2
- Crop Slice_24 1 1 images_splitncnn_1 487 -23309=1,1 -23310=1,2147483647 -23311=1,1
- Crop Slice_29 1 1 487 492 -23309=1,0 -23310=1,2147483647 -23311=1,2
- Crop Slice_34 1 1 images_splitncnn_0 497 -23309=1,1 -23310=1,2147483647 -23311=1,1
- Crop Slice_39 1 1 497 502 -23309=1,1 -23310=1,2147483647 -23311=1,2
- Concat Concat_40 4 1 472 492 482 502 503 0=0
- ...
- ```
- * Change first number for 235 to 235 - 9 = 226(since we will remove 10 layers and add 1 layers, total layers number should minus 9).
- * Then remove 10 lines of code from Split to Concat, but remember the last but 2nd number: 503.
- * Add YoloV5Focus layer After Input (using previous number 503):
- ```
- YoloV5Focus focus 1 1 images 503
- ```
- After(just an exmaple):
- ```
- 226 328
- Input images 0 1 images
- YoloV5Focus focus 1 1 images 503
- ...
- ```
-
- ## Use ncnn_optimize to generate new param and bin
- ```shell
- # suppose you are still under ncnn/build/tools/onnx dir.
- ../ncnnoptimize bytetrack_s.param bytetrack_s.bin bytetrack_s_op.param bytetrack_s_op.bin 65536
- ```
-
- ## Copy files and build ByteTrack
- Copy or move 'src', 'include' folders and 'CMakeLists.txt' file into ncnn/examples. Copy bytetrack_s_op.param, bytetrack_s_op.bin and <ByteTrack_HOME>/videos/palace.mp4 into ncnn/build/examples. Then, build ByteTrack:
-
- ```shell
- cd ncnn/build/examples
- cmake ..
- make
- ```
-
- ## Run the demo
- You can run the ncnn demo with **5 FPS** (96-core Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz):
- ```shell
- ./bytetrack palace.mp4
- ```
-
- You can modify 'num_threads' to optimize the running speed in [bytetrack.cpp](https://github.com/ifzhang/ByteTrack/blob/2e9a67895da6b47b948015f6861bba0bacd4e72f/deploy/ncnn/cpp/src/bytetrack.cpp#L309) according to the number of your CPU cores:
-
- ```
- yolox.opt.num_threads = 20;
- ```
-
-
- ## Acknowledgement
-
- * [ncnn](https://github.com/Tencent/ncnn)
|