|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- #!/usr/bin/env python3
- # -*- coding:utf-8 -*-
- # Copyright (c) Megvii, Inc. and its affiliates.
-
- import cv2
- import numpy as np
-
- from yolox.utils import adjust_box_anns
-
- import random
-
- from ..data_augment import box_candidates, random_perspective, augment_hsv
- from .datasets_wrapper import Dataset
-
-
- def get_mosaic_coordinate(mosaic_image, mosaic_index, xc, yc, w, h, input_h, input_w):
- # TODO update doc
- # index0 to top left part of image
- if mosaic_index == 0:
- x1, y1, x2, y2 = max(xc - w, 0), max(yc - h, 0), xc, yc
- small_coord = w - (x2 - x1), h - (y2 - y1), w, h
- # index1 to top right part of image
- elif mosaic_index == 1:
- x1, y1, x2, y2 = xc, max(yc - h, 0), min(xc + w, input_w * 2), yc
- small_coord = 0, h - (y2 - y1), min(w, x2 - x1), h
- # index2 to bottom left part of image
- elif mosaic_index == 2:
- x1, y1, x2, y2 = max(xc - w, 0), yc, xc, min(input_h * 2, yc + h)
- small_coord = w - (x2 - x1), 0, w, min(y2 - y1, h)
- # index2 to bottom right part of image
- elif mosaic_index == 3:
- x1, y1, x2, y2 = xc, yc, min(xc + w, input_w * 2), min(input_h * 2, yc + h) # noqa
- small_coord = 0, 0, min(w, x2 - x1), min(y2 - y1, h)
- return (x1, y1, x2, y2), small_coord
-
-
- class MosaicDetection(Dataset):
- """Detection dataset wrapper that performs mixup for normal dataset."""
-
- def __init__(
- self, dataset, img_size, mosaic=True, preproc=None,
- degrees=10.0, translate=0.1, scale=(0.5, 1.5), mscale=(0.5, 1.5),
- shear=2.0, perspective=0.0, enable_mixup=True, *args
- ):
- """
-
- Args:
- dataset(Dataset) : Pytorch dataset object.
- img_size (tuple):
- mosaic (bool): enable mosaic augmentation or not.
- preproc (func):
- degrees (float):
- translate (float):
- scale (tuple):
- mscale (tuple):
- shear (float):
- perspective (float):
- enable_mixup (bool):
- *args(tuple) : Additional arguments for mixup random sampler.
- """
- super().__init__(img_size, mosaic=mosaic)
- self._dataset = dataset
- self.preproc = preproc
- self.degrees = degrees
- self.translate = translate
- self.scale = scale
- self.shear = shear
- self.perspective = perspective
- self.mixup_scale = mscale
- self.enable_mosaic = mosaic
- self.enable_mixup = enable_mixup
-
- def __len__(self):
- return len(self._dataset)
-
- @Dataset.resize_getitem
- def __getitem__(self, idx):
- if self.enable_mosaic:
- mosaic_labels = []
- input_dim = self._dataset.input_dim
- input_h, input_w = input_dim[0], input_dim[1]
-
- # yc, xc = s, s # mosaic center x, y
- yc = int(random.uniform(0.5 * input_h, 1.5 * input_h))
- xc = int(random.uniform(0.5 * input_w, 1.5 * input_w))
-
- # 3 additional image indices
- indices = [idx] + [random.randint(0, len(self._dataset) - 1) for _ in range(3)]
-
- for i_mosaic, index in enumerate(indices):
- img, _labels, _, _ = self._dataset.pull_item(index)
- h0, w0 = img.shape[:2] # orig hw
- scale = min(1. * input_h / h0, 1. * input_w / w0)
- img = cv2.resize(
- img, (int(w0 * scale), int(h0 * scale)), interpolation=cv2.INTER_LINEAR
- )
- # generate output mosaic image
- (h, w, c) = img.shape[:3]
- if i_mosaic == 0:
- mosaic_img = np.full((input_h * 2, input_w * 2, c), 114, dtype=np.uint8)
-
- # suffix l means large image, while s means small image in mosaic aug.
- (l_x1, l_y1, l_x2, l_y2), (s_x1, s_y1, s_x2, s_y2) = get_mosaic_coordinate(
- mosaic_img, i_mosaic, xc, yc, w, h, input_h, input_w
- )
-
- mosaic_img[l_y1:l_y2, l_x1:l_x2] = img[s_y1:s_y2, s_x1:s_x2]
- padw, padh = l_x1 - s_x1, l_y1 - s_y1
-
- labels = _labels.copy()
- # Normalized xywh to pixel xyxy format
- if _labels.size > 0:
- labels[:, 0] = scale * _labels[:, 0] + padw
- labels[:, 1] = scale * _labels[:, 1] + padh
- labels[:, 2] = scale * _labels[:, 2] + padw
- labels[:, 3] = scale * _labels[:, 3] + padh
- mosaic_labels.append(labels)
-
- if len(mosaic_labels):
- mosaic_labels = np.concatenate(mosaic_labels, 0)
- '''
- np.clip(mosaic_labels[:, 0], 0, 2 * input_w, out=mosaic_labels[:, 0])
- np.clip(mosaic_labels[:, 1], 0, 2 * input_h, out=mosaic_labels[:, 1])
- np.clip(mosaic_labels[:, 2], 0, 2 * input_w, out=mosaic_labels[:, 2])
- np.clip(mosaic_labels[:, 3], 0, 2 * input_h, out=mosaic_labels[:, 3])
- '''
-
- mosaic_labels = mosaic_labels[mosaic_labels[:, 0] < 2 * input_w]
- mosaic_labels = mosaic_labels[mosaic_labels[:, 2] > 0]
- mosaic_labels = mosaic_labels[mosaic_labels[:, 1] < 2 * input_h]
- mosaic_labels = mosaic_labels[mosaic_labels[:, 3] > 0]
-
- #augment_hsv(mosaic_img)
- mosaic_img, mosaic_labels = random_perspective(
- mosaic_img,
- mosaic_labels,
- degrees=self.degrees,
- translate=self.translate,
- scale=self.scale,
- shear=self.shear,
- perspective=self.perspective,
- border=[-input_h // 2, -input_w // 2],
- ) # border to remove
-
- # -----------------------------------------------------------------
- # CopyPaste: https://arxiv.org/abs/2012.07177
- # -----------------------------------------------------------------
- if self.enable_mixup and not len(mosaic_labels) == 0:
- mosaic_img, mosaic_labels = self.mixup(mosaic_img, mosaic_labels, self.input_dim)
-
- mix_img, padded_labels = self.preproc(mosaic_img, mosaic_labels, self.input_dim)
- img_info = (mix_img.shape[1], mix_img.shape[0])
-
- return mix_img, padded_labels, img_info, np.array([idx])
-
- else:
- self._dataset._input_dim = self.input_dim
- img, label, img_info, id_ = self._dataset.pull_item(idx)
- img, label = self.preproc(img, label, self.input_dim)
- return img, label, img_info, id_
-
- def mixup(self, origin_img, origin_labels, input_dim):
- jit_factor = random.uniform(*self.mixup_scale)
- FLIP = random.uniform(0, 1) > 0.5
- cp_labels = []
- while len(cp_labels) == 0:
- cp_index = random.randint(0, self.__len__() - 1)
- cp_labels = self._dataset.load_anno(cp_index)
- img, cp_labels, _, _ = self._dataset.pull_item(cp_index)
-
- if len(img.shape) == 3:
- cp_img = np.ones((input_dim[0], input_dim[1], 3)) * 114.0
- else:
- cp_img = np.ones(input_dim) * 114.0
- cp_scale_ratio = min(input_dim[0] / img.shape[0], input_dim[1] / img.shape[1])
- resized_img = cv2.resize(
- img,
- (int(img.shape[1] * cp_scale_ratio), int(img.shape[0] * cp_scale_ratio)),
- interpolation=cv2.INTER_LINEAR,
- ).astype(np.float32)
- cp_img[
- : int(img.shape[0] * cp_scale_ratio), : int(img.shape[1] * cp_scale_ratio)
- ] = resized_img
- cp_img = cv2.resize(
- cp_img,
- (int(cp_img.shape[1] * jit_factor), int(cp_img.shape[0] * jit_factor)),
- )
- cp_scale_ratio *= jit_factor
- if FLIP:
- cp_img = cp_img[:, ::-1, :]
-
- origin_h, origin_w = cp_img.shape[:2]
- target_h, target_w = origin_img.shape[:2]
- padded_img = np.zeros(
- (max(origin_h, target_h), max(origin_w, target_w), 3)
- ).astype(np.uint8)
- padded_img[:origin_h, :origin_w] = cp_img
-
- x_offset, y_offset = 0, 0
- if padded_img.shape[0] > target_h:
- y_offset = random.randint(0, padded_img.shape[0] - target_h - 1)
- if padded_img.shape[1] > target_w:
- x_offset = random.randint(0, padded_img.shape[1] - target_w - 1)
- padded_cropped_img = padded_img[
- y_offset: y_offset + target_h, x_offset: x_offset + target_w
- ]
-
- cp_bboxes_origin_np = adjust_box_anns(
- cp_labels[:, :4].copy(), cp_scale_ratio, 0, 0, origin_w, origin_h
- )
- if FLIP:
- cp_bboxes_origin_np[:, 0::2] = (
- origin_w - cp_bboxes_origin_np[:, 0::2][:, ::-1]
- )
- cp_bboxes_transformed_np = cp_bboxes_origin_np.copy()
- '''
- cp_bboxes_transformed_np[:, 0::2] = np.clip(
- cp_bboxes_transformed_np[:, 0::2] - x_offset, 0, target_w
- )
- cp_bboxes_transformed_np[:, 1::2] = np.clip(
- cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h
- )
- '''
- cp_bboxes_transformed_np[:, 0::2] = cp_bboxes_transformed_np[:, 0::2] - x_offset
- cp_bboxes_transformed_np[:, 1::2] = cp_bboxes_transformed_np[:, 1::2] - y_offset
- keep_list = box_candidates(cp_bboxes_origin_np.T, cp_bboxes_transformed_np.T, 5)
-
- if keep_list.sum() >= 1.0:
- cls_labels = cp_labels[keep_list, 4:5].copy()
- id_labels = cp_labels[keep_list, 5:6].copy()
- box_labels = cp_bboxes_transformed_np[keep_list]
- labels = np.hstack((box_labels, cls_labels, id_labels))
- # remove outside bbox
- labels = labels[labels[:, 0] < target_w]
- labels = labels[labels[:, 2] > 0]
- labels = labels[labels[:, 1] < target_h]
- labels = labels[labels[:, 3] > 0]
- origin_labels = np.vstack((origin_labels, labels))
- origin_img = origin_img.astype(np.float32)
- origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(np.float32)
-
- return origin_img, origin_labels
|