Meta Byte Track
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

byte_tracker.py 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. import numpy as np
  2. from collections import deque
  3. import os
  4. import os.path as osp
  5. import copy
  6. import torch
  7. import torch.nn.functional as F
  8. from mot_online.kalman_filter import KalmanFilter
  9. from mot_online.basetrack import BaseTrack, TrackState
  10. from mot_online import matching
  11. class STrack(BaseTrack):
  12. shared_kalman = KalmanFilter()
  13. def __init__(self, tlwh, score):
  14. # wait activate
  15. self._tlwh = np.asarray(tlwh, dtype=np.float)
  16. self.kalman_filter = None
  17. self.mean, self.covariance = None, None
  18. self.is_activated = False
  19. self.score = score
  20. self.tracklet_len = 0
  21. def predict(self):
  22. mean_state = self.mean.copy()
  23. if self.state != TrackState.Tracked:
  24. mean_state[7] = 0
  25. self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
  26. @staticmethod
  27. def multi_predict(stracks):
  28. if len(stracks) > 0:
  29. multi_mean = np.asarray([st.mean.copy() for st in stracks])
  30. multi_covariance = np.asarray([st.covariance for st in stracks])
  31. for i, st in enumerate(stracks):
  32. if st.state != TrackState.Tracked:
  33. multi_mean[i][7] = 0
  34. multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
  35. for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
  36. stracks[i].mean = mean
  37. stracks[i].covariance = cov
  38. def activate(self, kalman_filter, frame_id):
  39. """Start a new tracklet"""
  40. self.kalman_filter = kalman_filter
  41. self.track_id = self.next_id()
  42. self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
  43. self.tracklet_len = 0
  44. self.state = TrackState.Tracked
  45. if frame_id == 1:
  46. self.is_activated = True
  47. # self.is_activated = True
  48. self.frame_id = frame_id
  49. self.start_frame = frame_id
  50. def re_activate(self, new_track, frame_id, new_id=False):
  51. self.mean, self.covariance = self.kalman_filter.update(
  52. self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
  53. )
  54. self.tracklet_len = 0
  55. self.state = TrackState.Tracked
  56. self.is_activated = True
  57. self.frame_id = frame_id
  58. if new_id:
  59. self.track_id = self.next_id()
  60. self.score = new_track.score
  61. def update(self, new_track, frame_id):
  62. """
  63. Update a matched track
  64. :type new_track: STrack
  65. :type frame_id: int
  66. :type update_feature: bool
  67. :return:
  68. """
  69. self.frame_id = frame_id
  70. self.tracklet_len += 1
  71. new_tlwh = new_track.tlwh
  72. self.mean, self.covariance = self.kalman_filter.update(
  73. self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
  74. self.state = TrackState.Tracked
  75. self.is_activated = True
  76. self.score = new_track.score
  77. @property
  78. # @jit(nopython=True)
  79. def tlwh(self):
  80. """Get current position in bounding box format `(top left x, top left y,
  81. width, height)`.
  82. """
  83. if self.mean is None:
  84. return self._tlwh.copy()
  85. ret = self.mean[:4].copy()
  86. ret[2] *= ret[3]
  87. ret[:2] -= ret[2:] / 2
  88. return ret
  89. @property
  90. # @jit(nopython=True)
  91. def tlbr(self):
  92. """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
  93. `(top left, bottom right)`.
  94. """
  95. ret = self.tlwh.copy()
  96. ret[2:] += ret[:2]
  97. return ret
  98. @staticmethod
  99. # @jit(nopython=True)
  100. def tlwh_to_xyah(tlwh):
  101. """Convert bounding box to format `(center x, center y, aspect ratio,
  102. height)`, where the aspect ratio is `width / height`.
  103. """
  104. ret = np.asarray(tlwh).copy()
  105. ret[:2] += ret[2:] / 2
  106. ret[2] /= ret[3]
  107. return ret
  108. def to_xyah(self):
  109. return self.tlwh_to_xyah(self.tlwh)
  110. @staticmethod
  111. # @jit(nopython=True)
  112. def tlbr_to_tlwh(tlbr):
  113. ret = np.asarray(tlbr).copy()
  114. ret[2:] -= ret[:2]
  115. return ret
  116. @staticmethod
  117. # @jit(nopython=True)
  118. def tlwh_to_tlbr(tlwh):
  119. ret = np.asarray(tlwh).copy()
  120. ret[2:] += ret[:2]
  121. return ret
  122. def __repr__(self):
  123. return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
  124. class BYTETracker(object):
  125. def __init__(self, frame_rate=30):
  126. self.tracked_stracks = [] # type: list[STrack]
  127. self.lost_stracks = [] # type: list[STrack]
  128. self.removed_stracks = [] # type: list[STrack]
  129. self.frame_id = 0
  130. self.low_thresh = 0.2
  131. self.track_thresh = 0.8
  132. self.det_thresh = self.track_thresh + 0.1
  133. self.buffer_size = int(frame_rate / 30.0 * 30)
  134. self.max_time_lost = self.buffer_size
  135. self.kalman_filter = KalmanFilter()
  136. # def update(self, output_results):
  137. def update(self, det_bboxes, det_labels, frame_id, track_feats=None):
  138. # self.frame_id += 1
  139. self.frame_id = frame_id + 1
  140. activated_starcks = []
  141. refind_stracks = []
  142. lost_stracks = []
  143. removed_stracks = []
  144. # scores = output_results[:, 4]
  145. # bboxes = output_results[:, :4] # x1y1x2y2
  146. scores = det_bboxes[:, 4].cpu().numpy()
  147. bboxes = det_bboxes[:, :4].cpu().numpy()
  148. remain_inds = scores > self.track_thresh
  149. dets = bboxes[remain_inds]
  150. scores_keep = scores[remain_inds]
  151. inds_low = scores > self.low_thresh
  152. inds_high = scores < self.track_thresh
  153. inds_second = np.logical_and(inds_low, inds_high)
  154. dets_second = bboxes[inds_second]
  155. scores_second = scores[inds_second]
  156. if len(dets) > 0:
  157. '''Detections'''
  158. detections = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for
  159. (tlbr, s) in zip(dets, scores_keep)]
  160. else:
  161. detections = []
  162. ''' Add newly detected tracklets to tracked_stracks'''
  163. unconfirmed = []
  164. tracked_stracks = [] # type: list[STrack]
  165. for track in self.tracked_stracks:
  166. if not track.is_activated:
  167. unconfirmed.append(track)
  168. else:
  169. tracked_stracks.append(track)
  170. ''' Step 2: First association, with Kalman and IOU'''
  171. strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
  172. # Predict the current location with KF
  173. STrack.multi_predict(strack_pool)
  174. dists = matching.iou_distance(strack_pool, detections)
  175. matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.8)
  176. for itracked, idet in matches:
  177. track = strack_pool[itracked]
  178. det = detections[idet]
  179. if track.state == TrackState.Tracked:
  180. track.update(detections[idet], self.frame_id)
  181. activated_starcks.append(track)
  182. else:
  183. track.re_activate(det, self.frame_id, new_id=False)
  184. refind_stracks.append(track)
  185. ''' Step 3: Second association, with IOU'''
  186. # association the untrack to the low score detections
  187. if len(dets_second) > 0:
  188. '''Detections'''
  189. detections_second = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for
  190. (tlbr, s) in zip(dets_second, scores_second)]
  191. else:
  192. detections_second = []
  193. r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
  194. dists = matching.iou_distance(r_tracked_stracks, detections_second)
  195. matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5)
  196. for itracked, idet in matches:
  197. track = r_tracked_stracks[itracked]
  198. det = detections_second[idet]
  199. if track.state == TrackState.Tracked:
  200. track.update(det, self.frame_id)
  201. activated_starcks.append(track)
  202. else:
  203. track.re_activate(det, self.frame_id, new_id=False)
  204. refind_stracks.append(track)
  205. for it in u_track:
  206. #track = strack_pool[it]
  207. track = r_tracked_stracks[it]
  208. if not track.state == TrackState.Lost:
  209. track.mark_lost()
  210. lost_stracks.append(track)
  211. '''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
  212. detections = [detections[i] for i in u_detection]
  213. dists = matching.iou_distance(unconfirmed, detections)
  214. matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
  215. for itracked, idet in matches:
  216. unconfirmed[itracked].update(detections[idet], self.frame_id)
  217. activated_starcks.append(unconfirmed[itracked])
  218. for it in u_unconfirmed:
  219. track = unconfirmed[it]
  220. track.mark_removed()
  221. removed_stracks.append(track)
  222. """ Step 4: Init new stracks"""
  223. for inew in u_detection:
  224. track = detections[inew]
  225. if track.score < self.det_thresh:
  226. continue
  227. track.activate(self.kalman_filter, self.frame_id)
  228. activated_starcks.append(track)
  229. """ Step 5: Update state"""
  230. for track in self.lost_stracks:
  231. if self.frame_id - track.end_frame > self.max_time_lost:
  232. track.mark_removed()
  233. removed_stracks.append(track)
  234. # print('Ramained match {} s'.format(t4-t3))
  235. self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
  236. self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
  237. self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
  238. self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
  239. self.lost_stracks.extend(lost_stracks)
  240. self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
  241. self.removed_stracks.extend(removed_stracks)
  242. self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
  243. # get scores of lost tracks
  244. output_stracks = [track for track in self.tracked_stracks if track.is_activated]
  245. # return output_stracks
  246. bboxes = []
  247. labels = []
  248. ids = []
  249. for track in output_stracks:
  250. if track.is_activated:
  251. track_bbox = track.tlbr
  252. bboxes.append([track_bbox[0], track_bbox[1], track_bbox[2], track_bbox[3], track.score])
  253. labels.append(0)
  254. ids.append(track.track_id)
  255. return torch.tensor(bboxes), torch.tensor(labels), torch.tensor(ids)
  256. def joint_stracks(tlista, tlistb):
  257. exists = {}
  258. res = []
  259. for t in tlista:
  260. exists[t.track_id] = 1
  261. res.append(t)
  262. for t in tlistb:
  263. tid = t.track_id
  264. if not exists.get(tid, 0):
  265. exists[tid] = 1
  266. res.append(t)
  267. return res
  268. def sub_stracks(tlista, tlistb):
  269. stracks = {}
  270. for t in tlista:
  271. stracks[t.track_id] = t
  272. for t in tlistb:
  273. tid = t.track_id
  274. if stracks.get(tid, 0):
  275. del stracks[tid]
  276. return list(stracks.values())
  277. def remove_duplicate_stracks(stracksa, stracksb):
  278. pdist = matching.iou_distance(stracksa, stracksb)
  279. pairs = np.where(pdist < 0.15)
  280. dupa, dupb = list(), list()
  281. for p, q in zip(*pairs):
  282. timep = stracksa[p].frame_id - stracksa[p].start_frame
  283. timeq = stracksb[q].frame_id - stracksb[q].start_frame
  284. if timep > timeq:
  285. dupb.append(q)
  286. else:
  287. dupa.append(p)
  288. resa = [t for i, t in enumerate(stracksa) if not i in dupa]
  289. resb = [t for i, t in enumerate(stracksb) if not i in dupb]
  290. return resa, resb
  291. def remove_fp_stracks(stracksa, n_frame=10):
  292. remain = []
  293. for t in stracksa:
  294. score_5 = t.score_list[-n_frame:]
  295. score_5 = np.array(score_5, dtype=np.float32)
  296. index = score_5 < 0.45
  297. num = np.sum(index)
  298. if num < n_frame:
  299. remain.append(t)
  300. return remain