|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396 |
- #include "layer.h"
- #include "net.h"
-
- #if defined(USE_NCNN_SIMPLEOCV)
- #include "simpleocv.h"
- #include <opencv2/opencv.hpp>
- #else
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include <opencv2/opencv.hpp>
- #endif
- #include <float.h>
- #include <stdio.h>
- #include <vector>
- #include <chrono>
- #include "BYTETracker.h"
-
- #define YOLOX_NMS_THRESH 0.7 // nms threshold
- #define YOLOX_CONF_THRESH 0.1 // threshold of bounding box prob
- #define INPUT_W 1088 // target image size w after resize
- #define INPUT_H 608 // target image size h after resize
-
- Mat static_resize(Mat& img) {
- float r = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
- // r = std::min(r, 1.0f);
- int unpad_w = r * img.cols;
- int unpad_h = r * img.rows;
- Mat re(unpad_h, unpad_w, CV_8UC3);
- resize(img, re, re.size());
- Mat out(INPUT_H, INPUT_W, CV_8UC3, Scalar(114, 114, 114));
- re.copyTo(out(Rect(0, 0, re.cols, re.rows)));
- return out;
- }
-
- // YOLOX use the same focus in yolov5
- class YoloV5Focus : public ncnn::Layer
- {
- public:
- YoloV5Focus()
- {
- one_blob_only = true;
- }
-
- virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const
- {
- int w = bottom_blob.w;
- int h = bottom_blob.h;
- int channels = bottom_blob.c;
-
- int outw = w / 2;
- int outh = h / 2;
- int outc = channels * 4;
-
- top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator);
- if (top_blob.empty())
- return -100;
-
- #pragma omp parallel for num_threads(opt.num_threads)
- for (int p = 0; p < outc; p++)
- {
- const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2);
- float* outptr = top_blob.channel(p);
-
- for (int i = 0; i < outh; i++)
- {
- for (int j = 0; j < outw; j++)
- {
- *outptr = *ptr;
-
- outptr += 1;
- ptr += 2;
- }
-
- ptr += w;
- }
- }
-
- return 0;
- }
- };
-
- DEFINE_LAYER_CREATOR(YoloV5Focus)
-
- struct GridAndStride
- {
- int grid0;
- int grid1;
- int stride;
- };
-
- static inline float intersection_area(const Object& a, const Object& b)
- {
- cv::Rect_<float> inter = a.rect & b.rect;
- return inter.area();
- }
-
- static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
- {
- int i = left;
- int j = right;
- float p = faceobjects[(left + right) / 2].prob;
-
- while (i <= j)
- {
- while (faceobjects[i].prob > p)
- i++;
-
- while (faceobjects[j].prob < p)
- j--;
-
- if (i <= j)
- {
- // swap
- std::swap(faceobjects[i], faceobjects[j]);
-
- i++;
- j--;
- }
- }
-
- #pragma omp parallel sections
- {
- #pragma omp section
- {
- if (left < j) qsort_descent_inplace(faceobjects, left, j);
- }
- #pragma omp section
- {
- if (i < right) qsort_descent_inplace(faceobjects, i, right);
- }
- }
- }
-
- static void qsort_descent_inplace(std::vector<Object>& objects)
- {
- if (objects.empty())
- return;
-
- qsort_descent_inplace(objects, 0, objects.size() - 1);
- }
-
- static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold)
- {
- picked.clear();
-
- const int n = faceobjects.size();
-
- std::vector<float> areas(n);
- for (int i = 0; i < n; i++)
- {
- areas[i] = faceobjects[i].rect.area();
- }
-
- for (int i = 0; i < n; i++)
- {
- const Object& a = faceobjects[i];
-
- int keep = 1;
- for (int j = 0; j < (int)picked.size(); j++)
- {
- const Object& b = faceobjects[picked[j]];
-
- // intersection over union
- float inter_area = intersection_area(a, b);
- float union_area = areas[i] + areas[picked[j]] - inter_area;
- // float IoU = inter_area / union_area
- if (inter_area / union_area > nms_threshold)
- keep = 0;
- }
-
- if (keep)
- picked.push_back(i);
- }
- }
-
- static void generate_grids_and_stride(const int target_w, const int target_h, std::vector<int>& strides, std::vector<GridAndStride>& grid_strides)
- {
- for (int i = 0; i < (int)strides.size(); i++)
- {
- int stride = strides[i];
- int num_grid_w = target_w / stride;
- int num_grid_h = target_h / stride;
- for (int g1 = 0; g1 < num_grid_h; g1++)
- {
- for (int g0 = 0; g0 < num_grid_w; g0++)
- {
- GridAndStride gs;
- gs.grid0 = g0;
- gs.grid1 = g1;
- gs.stride = stride;
- grid_strides.push_back(gs);
- }
- }
- }
- }
-
- static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects)
- {
- const int num_grid = feat_blob.h;
- const int num_class = feat_blob.w - 5;
- const int num_anchors = grid_strides.size();
-
- const float* feat_ptr = feat_blob.channel(0);
- for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++)
- {
- const int grid0 = grid_strides[anchor_idx].grid0;
- const int grid1 = grid_strides[anchor_idx].grid1;
- const int stride = grid_strides[anchor_idx].stride;
-
- // yolox/models/yolo_head.py decode logic
- // outputs[..., :2] = (outputs[..., :2] + grids) * strides
- // outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides
- float x_center = (feat_ptr[0] + grid0) * stride;
- float y_center = (feat_ptr[1] + grid1) * stride;
- float w = exp(feat_ptr[2]) * stride;
- float h = exp(feat_ptr[3]) * stride;
- float x0 = x_center - w * 0.5f;
- float y0 = y_center - h * 0.5f;
-
- float box_objectness = feat_ptr[4];
- for (int class_idx = 0; class_idx < num_class; class_idx++)
- {
- float box_cls_score = feat_ptr[5 + class_idx];
- float box_prob = box_objectness * box_cls_score;
- if (box_prob > prob_threshold)
- {
- Object obj;
- obj.rect.x = x0;
- obj.rect.y = y0;
- obj.rect.width = w;
- obj.rect.height = h;
- obj.label = class_idx;
- obj.prob = box_prob;
-
- objects.push_back(obj);
- }
-
- } // class loop
- feat_ptr += feat_blob.w;
-
- } // point anchor loop
- }
-
- static int detect_yolox(ncnn::Mat& in_pad, std::vector<Object>& objects, ncnn::Extractor ex, float scale)
- {
-
- ex.input("images", in_pad);
-
- std::vector<Object> proposals;
-
- {
- ncnn::Mat out;
- ex.extract("output", out);
-
- static const int stride_arr[] = {8, 16, 32}; // might have stride=64 in YOLOX
- std::vector<int> strides(stride_arr, stride_arr + sizeof(stride_arr) / sizeof(stride_arr[0]));
- std::vector<GridAndStride> grid_strides;
- generate_grids_and_stride(INPUT_W, INPUT_H, strides, grid_strides);
- generate_yolox_proposals(grid_strides, out, YOLOX_CONF_THRESH, proposals);
- }
- // sort all proposals by score from highest to lowest
- qsort_descent_inplace(proposals);
-
- // apply nms with nms_threshold
- std::vector<int> picked;
- nms_sorted_bboxes(proposals, picked, YOLOX_NMS_THRESH);
-
- int count = picked.size();
-
- objects.resize(count);
- for (int i = 0; i < count; i++)
- {
- objects[i] = proposals[picked[i]];
-
- // adjust offset to original unpadded
- float x0 = (objects[i].rect.x) / scale;
- float y0 = (objects[i].rect.y) / scale;
- float x1 = (objects[i].rect.x + objects[i].rect.width) / scale;
- float y1 = (objects[i].rect.y + objects[i].rect.height) / scale;
-
- // clip
- // x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
- // y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
- // x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
- // y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
-
- objects[i].rect.x = x0;
- objects[i].rect.y = y0;
- objects[i].rect.width = x1 - x0;
- objects[i].rect.height = y1 - y0;
- }
-
- return 0;
- }
-
- int main(int argc, char** argv)
- {
- if (argc != 2)
- {
- fprintf(stderr, "Usage: %s [videopath]\n", argv[0]);
- return -1;
- }
-
- ncnn::Net yolox;
-
- //yolox.opt.use_vulkan_compute = true;
- //yolox.opt.use_bf16_storage = true;
- yolox.opt.num_threads = 20;
- //ncnn::set_cpu_powersave(0);
-
- //ncnn::set_omp_dynamic(0);
- //ncnn::set_omp_num_threads(20);
-
- // Focus in yolov5
- yolox.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator);
-
- yolox.load_param("bytetrack_s_op.param");
- yolox.load_model("bytetrack_s_op.bin");
-
- ncnn::Extractor ex = yolox.create_extractor();
-
- const char* videopath = argv[1];
-
- VideoCapture cap(videopath);
- if (!cap.isOpened())
- return 0;
-
- int img_w = cap.get(CV_CAP_PROP_FRAME_WIDTH);
- int img_h = cap.get(CV_CAP_PROP_FRAME_HEIGHT);
- int fps = cap.get(CV_CAP_PROP_FPS);
- long nFrame = static_cast<long>(cap.get(CV_CAP_PROP_FRAME_COUNT));
- cout << "Total frames: " << nFrame << endl;
-
- VideoWriter writer("demo.mp4", CV_FOURCC('m', 'p', '4', 'v'), fps, Size(img_w, img_h));
-
- Mat img;
- BYTETracker tracker(fps, 30);
- int num_frames = 0;
- int total_ms = 1;
- for (;;)
- {
- if(!cap.read(img))
- break;
- num_frames ++;
- if (num_frames % 20 == 0)
- {
- cout << "Processing frame " << num_frames << " (" << num_frames * 1000000 / total_ms << " fps)" << endl;
- }
- if (img.empty())
- break;
-
- float scale = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
- Mat pr_img = static_resize(img);
- ncnn::Mat in_pad = ncnn::Mat::from_pixels_resize(pr_img.data, ncnn::Mat::PIXEL_BGR2RGB, INPUT_W, INPUT_H, INPUT_W, INPUT_H);
-
- // python 0-1 input tensor with rgb_means = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225)
- // so for 0-255 input image, rgb_mean should multiply 255 and norm should div by std.
- const float mean_vals[3] = {255.f * 0.485f, 255.f * 0.456, 255.f * 0.406f};
- const float norm_vals[3] = {1 / (255.f * 0.229f), 1 / (255.f * 0.224f), 1 / (255.f * 0.225f)};
-
- in_pad.substract_mean_normalize(mean_vals, norm_vals);
-
- std::vector<Object> objects;
- auto start = chrono::system_clock::now();
- //detect_yolox(img, objects);
- detect_yolox(in_pad, objects, ex, scale);
- vector<STrack> output_stracks = tracker.update(objects);
- auto end = chrono::system_clock::now();
- total_ms = total_ms + chrono::duration_cast<chrono::microseconds>(end - start).count();
- for (int i = 0; i < output_stracks.size(); i++)
- {
- vector<float> tlwh = output_stracks[i].tlwh;
- bool vertical = tlwh[2] / tlwh[3] > 1.6;
- if (tlwh[2] * tlwh[3] > 20 && !vertical)
- {
- Scalar s = tracker.get_color(output_stracks[i].track_id);
- putText(img, format("%d", output_stracks[i].track_id), Point(tlwh[0], tlwh[1] - 5),
- 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);
- rectangle(img, Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2);
- }
- }
- putText(img, format("frame: %d fps: %d num: %d", num_frames, num_frames * 1000000 / total_ms, output_stracks.size()),
- Point(0, 30), 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);
- writer.write(img);
- char c = waitKey(1);
- if (c > 0)
- {
- break;
- }
- }
- cap.release();
- cout << "FPS: " << num_frames * 1000000 / total_ms << endl;
-
- return 0;
- }
|