123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- function [] = RunExpSrv8s(iterStartStr, iterEndStr, netSizeStr, addAttPercStr)
- %function [] = RunExpSrv8s(iterStartStr, iterEndStr, netSizeStr, normF1, normF2, normF3, addAttPercStr)
-
- %affinity calculation types
- % affinity_calculation_shortest_path = 0;
- % affinity_calculation_euclid = 1;
- % affinity_calculation_common_friends = 2;
- % affinity_calculation_random_clustering = 3;
- % affinity_calculation_adamic_adar = 4;
- % affinity_calculation_katz_beta_0_5 = 5;
- % affinity_calculation_katz_beta_0_05 = 6;
- % affinity_calculation_katz_beta_0_005 = 7;
- % affinity_calculation_boost = 9; % sigal 12.3.13 add BOOST option
-
- expParams = 3;
- if nargin < expParams
- usageStr = 'Usage: RunExperimentSrv <iterStart> <iterEnd> <netSize> [<addAttPerc>]\n';
- % usageStr = 'Usage: RunExperimentSrv <iterStart> <iterEnd> <netSize> <f1> <f2> <f3> [<addAttPerc>]\n';
- fprintf('RunExpSrv8s:Invalid usage: expected at least %d parameters.\n%s', expParams, usageStr);
- return;
- end
-
- % input_iter = input('iteration number:');
- iterStart = str2num(iterStartStr);
- iterEnd = str2num(iterEndStr);
-
- % input_factors
- f1 = 9; %str2num(normF1);
- f2 = 2; %str2num(normF2);
- f3 = 2; %str2num(normF3);
- normFactorVec = [f1 f2 f3];
-
- % input addAttPerc;
- addAttPerc = 1; %[1 0.7];
- if nargin > expParams
- addAttPerc = str2double(addAttPercStr);
- if addAttPerc > 1
- addAttPerc = 1;
- elseif addAttPerc < 0
- addAttPerc = 0;
- end
- end
-
- affinities = [2,4,3,9]; %[2,3,9]; %[2,4,3,9]; %,6]; %3,4]; %,6];
- %num_missing_nodes_arr = [10 30 50 100 150 200]; %%[11 21 31 41 50]; %%5:5:30; %10:10:50; %%[11 21 31 41 50]; %10:10:50;
- percentKnownPHsVec = 1;
-
- % ds_10k = [2000 5000 10000];
- % ds_10km = [10001];
- % ds_32k = [2048 4096 8192 16384 32768];
- % ds_100k = [20000 25000 50000 75000 100000];
- % ds_100km = [100001];
- % ds_Train = [2001 2049];
- ds_GridTrain = [45];
-
- % input netSize
- netSize = str2num(netSizeStr);
- % if find(ds_10k==netSize)
- % ds_str = 'Datasets_10K/';
- % num_missing_nodes_arr = [10 20 30 50 70 100];%[10 100 150];
- % elseif find(ds_10km==netSize)
- % ds_str = 'Datasets_10K/';
- % netSize = netSize-1;
- % num_missing_nodes_arr = [50 100 150 200 250]; %[10 100 150];
- % elseif find(ds_32k==netSize)
- % ds_str = 'Datasets_32K/'; %'Train/'; %
- % num_missing_nodes_arr = [11 21 31 41 50]; % 100]; %Train
- % elseif find(ds_100k==netSize)
- % ds_str = 'Datasets_100K/';
- % num_missing_nodes_arr = [50 100 200 300 500];
- % elseif find(ds_100km==netSize)
- % ds_str = 'Datasets_100K/';
- % netSize = netSize-1;
- % num_missing_nodes_arr = [200 400 600 800 1000];
- % elseif find(ds_Train==netSize)
- % ds_str = 'Train/';
- % netSize = netSize-1;
- % num_missing_nodes_arr = [10 30 50 70 100 150]; %[11 21 31 41 50 100 150];
- % elseif find(ds_GridTrain==netSize)
- % ds_str = 'graph_production/produced_graphs/';
- % num_missing_nodes_arr = [10 30 50 70];
- % else
- % fprintf('RunExpSrv8s:Invalid netSize %d.\n',netSize);
- % return;
- % end
- ds_str = 'graph_production/produced_graphs/';
- num_missing_nodes_arr = [1];
-
- fprintf('RunExpSrv8s: netSize %d, dataset %s\n',netSize,ds_str);
-
- rootDir = '../';
- %rootDir = '/Users/armin/Desktop/DML/projects/graphgenproj/'; %Facebook/';
- %rootDir = 'D:/__SN_Jan14_FF75/'; %Facebook/';
- filePrefix = 'testgraph_*'; % 'facebook_sparse_'; %
- netSizes = netSize; %%[2048 4096 5000 8192 10000 16384 32768];
-
- %Sigal - 13.2.14 - images data
- imagesDir = strcat(rootDir,'Images/');
- imagesFile = 'ImagesMatchA.csv';
- imagesCount = 200000;
- imagesData = []; % LoadAsciiImagesMatch(imagesDir, imagesFile, imagesCount, debugFlag); %[]; %
- numImagesProfiles = 200; % 50; %
- imgMissProb = 0; %0.2; %%no images
- imgSimProbDiff = 0.1; %%0.2;
- imgSimType = 1; %% 0=realData, 1=rand(uniform distribution), 2=randn(normal distribution)
-
- datasetDir = strcat(rootDir,ds_str); %'Datasets_10K/'); %'Facebook/Datasets_10K/'); %'Traing_16K/'); %% TODO sigal - change rootDir path before EXE build
- factor_str = sprintf('F%d%d%d_',normFactorVec);
- images_str = sprintf('I%dP%dM%d_',imgSimType,imgSimProbDiff*10,imgMissProb*10);
- results_dir = strcat(datasetDir,'testImg_noTh_',netSizeStr,'/',factor_str,images_str,'Iter_',iterStartStr,iterEndStr,'/');
- fprintf('RunExpSrv8b: results_dir %s\n',results_dir);
-
- runAlgFlag = 1;
- debugFlag = 0;
- dumpKronEM = 1;
- dumpGED = 0;
- numThreshold = 0;
- maxAttStat = 1.35; %1.20; % population threshold - use this attribute only if it appears less than this percentage
- numAttrCols = 60; %21; %%50; %%11; %40; %%50;
- attSelected = ones(1,numAttrCols);
- attWeight = [0.3]; %[0.2 0.3 0.4 0.5 0.6 0.7 0.8]; %%0.3;
- addMissingAtt = addAttPerc;
- attAffinityThreshold = 0.15; % noise threshold
- % skipAtt = [6 2 20 26 22 17 8 14 3 1]; % top 10 PercC
- % attSelected(skipAtt) = 0;
-
- date_now = clock;
- randSeed = round((date_now(5)+date_now(6)*11)*iterStart+31);
- rand(1,randSeed);
- date_now = strcat(num2str(date_now(1)),'_',num2str(date_now(2)),'_', num2str(date_now(3)),'_', num2str(date_now(4)), num2str(date_now(5)),'_', num2str(date_now(6)));
- LogMsg(sprintf('%s Start RunExpSrv8s RunExperiment (random %d, addMissingAtt %.2f)...',date_now,randSeed,addMissingAtt));
-
- % attSelected = zeros(1,numAttrCols);
- % % for i = [1:4,6:8,12:20,22,24,26:30] %% top 23 threshold
- % % for i = [1,3,17,14,8,26,22,18,6,16] %% top 5/10 sum
- % % for i = [1,14,3,8,22,26,17,19,18,20] %% top 5/10 one
- % for i = [1,3,17,14,18,8,6,16,26,10] %% top 5/10 two
- % attSelected(i) = 1;
- % end
- % LogMsg(sprintf('Select %d attributes out of %d ...', sum(attSelected), size(attSelected,2)));
-
- for nodes = netSizes
- fprintf('----------!!!!%d---------', nodes);
- if size(strfind(filePrefix, 'facebook'),1)>0
- prefix = sprintf('%s%s%d_%s',datasetDir,filePrefix,nodes,'*.mat'); % '0*.txt.mat');
- else
- prefix = sprintf('%s%s%d_%s',datasetDir,filePrefix,nodes,'*.txt.mat'); % '0*.txt.mat');
- end
- files = dir(prefix);
- firstIter = 1;
-
- for iter = iterStart:iterEnd % loop over same network with different missing nodes
- if size(files,1) == 0
- fprintf('*** ERROR: RunExpSrv8b no file were found (prefix %s)\n',prefix);
- end
-
- for i = 1:size(files,1) % loop over the list of networks
-
- file = files(i).name;
-
- if size(strfind(filePrefix, 'facebook'),1)>0
- LogMsg(sprintf('facebook netwrok, skipping attributes ...'));
- attributes = [];
- attUpperRange = [];
- else
- % sigal 12/6/13 - use binary attribute mat file
- attFile = strrep(file, '.txt.mat', '.usr.mat');
- [attributes, attUpperRange, attSelected, attStat] = PrepareAttributes5(datasetDir, attFile, nodes, numAttrCols, maxAttStat, attSelected);
- LogMsg(sprintf('Select %d attributes out of %d ...', sum(attSelected), size(attSelected,2)));
- end
-
- if runAlgFlag == 1
- date_now = clock;
- date_now = strcat(num2str(date_now(1)),'_',num2str(date_now(2)),'_', num2str(date_now(3)),'_', num2str(date_now(4)), num2str(date_now(5)),'_', num2str(date_now(6)));
-
- % make sure dump & results directories exist
- if (firstIter == 1 && i == 1)
- firstIter = 0;
- if isdir(results_dir) == 0
- mkdir(results_dir);
- end
- dumpFilePath = sprintf('%sdumpKronEM_%s/', results_dir, date_now);
- if (dumpKronEM == 1)
- mkdir(dumpFilePath);
- end
- dump_data_dir = sprintf('%sdumpData_%s/', results_dir, date_now);
- if dumpGED == 1 && isdir(dump_data_dir) == 0
- mkdir(dump_data_dir)
- end
- end
-
- % run algorithm (file load is done internaly)
- [rand_score,purity,p_triads,missing_nodes_mapping,removed_nodes] = MissingNodes_S8b(datasetDir, file, ...
- attributes, attUpperRange, attWeight, addMissingAtt, normFactorVec, affinities, num_missing_nodes_arr, attAffinityThreshold, ...
- imagesData, numImagesProfiles, imgMissProb, imgSimType, imgSimProbDiff, percentKnownPHsVec, dumpGED, dump_data_dir, iter);
- %[rand_score,purity,p_triads,missing_nodes_mapping,removed_nodes] = MissingNodes_Sparse(datasetDir, file, affinities, 1);
-
- % dump graph data for KronEM runs
- if dumpKronEM == 1
- DumpDataset(datasetDir, file, iter, removed_nodes, dumpFilePath);
- end
-
- % save results
- out_file = sprintf('%sres_%s_%s.mat', results_dir, file, date_now);
- save(out_file);
- file_name = sprintf('%s%s','D:\Uni\sharif\Project\SAMI\Code\SAMI\output\mine\',file);
- if(iter == 1)
- copyfile('D:\Uni\sharif\Project\SAMI\Code\SAMI\output\graphed_1.mat',file_name);
- end
-
- LogMsg(sprintf('Results for file %s,iter %d at %s',file,iter,out_file));
- %fprintf('Completed RunExperiment cycle - results at %s.\n',out_file);
- end
-
- % beep;
- end
- end
- end
-
- date_now = clock;
- date_now = strcat(num2str(date_now(1)),'_',num2str(date_now(2)),'_', num2str(date_now(3)),'_', num2str(date_now(4)), num2str(date_now(5)),'_', num2str(date_now(6)));
- LogMsg(sprintf('%s Completed RunExpSrv8s RunExperiment (random %d).',date_now,randSeed));
-
- end
|