1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- function [ affinity ] = CalculateAffinityByAdamicAdar_Sparse( data, actual_graph_size, num_missing_nodes, num_attr_nodes, attWeight, connectPlaceholdersToNeighbors, addMissingAtt)
- %UNTITLED2 adamic/adar(i,j) = sum( 1 / log(num_neighbors(k) | k is a
- %neighbor of both i and j
- % Detailed explanation goes here
-
- fprintf('CalculateAffinityByAdamicAdar_Sparse: NNZ(data) = %d\n', nnz(data));
- %n = size(data,1);
- %diag_indices = 1:n+1:n*n;
- %data(diag_indices) = 1; %we consider each node as a neighbor of itself to obtain higher connectivity in the affinity matrix - i.e. each node will have a positive affinity to all its neighbors
- if connectPlaceholdersToNeighbors > 0
- data = ConnectMissingNodesToNeighborsNeighbors( data, actual_graph_size, num_missing_nodes, num_attr_nodes, addMissingAtt );
- end
- affinity = zeros(size(data,1), size(data,2));
-
- % Sigal 5.3.13: normalizeWeight
- % make sure that ratio att/link is same w/1-w
- if attWeight < 1 && attWeight >= 0
- normalizeWeight = attWeight/(1-attWeight);
- else
- normalizeWeight = 1;
- end
-
- for k = 1 : size(data,1)
- %find all the neighbors of k
- neighbors_k_vec = data(k,:);
- neighbors_k_vec(k) = 1;%we consider each node as a neighbor of itself to obtain higher connectivity in the affinity matrix - i.e. each node will have a positive affinity to all its neighbors
- neighbors_k = find(neighbors_k_vec);
- num_neighbors_k = size(neighbors_k, 2);
-
- %sigal - 17.12.12 - find # social neighbors of k
- %sigal - update 5.3.13
- if num_attr_nodes>0
- neighbors_k_vec(1:num_attr_nodes)=0;
- neighbors_k_vec(k) = 1;
- neighbors_k_social = find(neighbors_k_vec);
- num_neighbors_k_social = size(neighbors_k_social, 2);
- else
- num_neighbors_k_social = num_neighbors_k;
- end
-
-
- if num_neighbors_k > 1
- if k>num_attr_nodes
- w = 1;
- else
- w = normalizeWeight;
- end
- inv_log_num_neighbors_k = w / log(num_neighbors_k);
- inv_log_num_neighbors_k_social = w / log(num_neighbors_k_social);
- for i = neighbors_k
- for j = neighbors_k
- if i>num_attr_nodes && j>num_attr_nodes
- affinity(i,j) = affinity(i,j) + inv_log_num_neighbors_k_social;
- affinity(j,i) = affinity(i,j);
- % elseif i<=num_attr_nodes && j<=num_attr_nodes
- % %skip
- elseif k>num_attr_nodes
- % else
- affinity(i,j) = affinity(i,j) + inv_log_num_neighbors_k;
- affinity(j,i) = affinity(i,j);
- end
- end
- end
- end
- end
-
- affinity = sparse(affinity);
-
- % n = size(affinity,1);
- % whos
- % affinity(1:n+1:n*n) = max(max(affinity)); %set diagonals
-
- %normalize the matrix
- affinity = affinity ./ max(max(affinity));
-
- end
-
|