function [ data, attData, missing_nodes_mapping ] = RemoveRandomNodesWithImages( data, attData, totalAttNum, num_missing_nodes, missing_nodes_mapping, numImagesProfiles, non_neighbors_distance, missingNodesInput ) %RemoveRandomNodes Remove num_missing_nodes from data. If some nodes are %removed already, provide missing_nodes_mapping % Detailed explanation goes here if nargin < 7 non_neighbors_distance = 0; end if nargin >= 8 % i.e. getting missingNodesInput missing_nodes = missingNodesInput; else %%data_orig = data; numAttPerPH = 0; % if the mapping is larger than the number of nodes we want to remove, empty % it and start a new mapping. This can happen if we finished looping over % the number of missing nodes and started a new iteration of an outer loop. if size(missing_nodes_mapping,2) > num_missing_nodes missing_nodes_mapping = []; num_nodes_to_remove = num_missing_nodes; else num_nodes_to_remove = num_missing_nodes - size(missing_nodes_mapping,2); end % randomly choose missing nodes %missing_nodes = ChooseMissingNodes_old(num_nodes_to_remove, data, missing_nodes_mapping, non_neighbors_distance); missing_nodes = ChooseMissingNodes(num_nodes_to_remove, data, attData, totalAttNum, numAttPerPH, missing_nodes_mapping, numImagesProfiles); %sort the list and create a list of the new nodes that each missing node is mapped to - each link %to a missing node is replaced by a link to a new, "UNK" node %Sigal 23.1.14 - missing_nodes is now matrix with two rows: % first the removed node and second the selected profile) % no need to call unique as validation is already done in ChooseMissingNodes %missing_nodes = sort( unique(missing_nodes), 'descend'); %missing_nodes = sort( missing_nodes , 2, 'descend'); missing_nodes_mapping = missing_nodes; missing_nodes_list = sort(missing_nodes(1,:),'descend'); %replace each link to a missing node with a link to a new node %find all missing node neighbors missing_nodes_all_neighbors = zeros(1, size(data,2)); for curr_nissing_node = missing_nodes_list missing_nodes_all_neighbors = missing_nodes_all_neighbors | data(curr_nissing_node,:); end missing_nodes_all_neighbors = find(missing_nodes_all_neighbors); %for each node in missing_nodes_all_neighbors add edges to placeholder for i = missing_nodes_all_neighbors neighbors = find(data(i,:)); missing_neighbors = intersect(neighbors, missing_nodes_list); missing_neighbors = sort(missing_neighbors, 'descend'); for curr_missing_neighbor = missing_neighbors if data(i,curr_missing_neighbor) == 1 % append col & row for the placeholder data = ExpandDataByOne(data, i, non_neighbors_distance); % sigal 31.1.14 - support remove without attributes if totalAttNum > 0 attData = ExpandAttByOne(attData, curr_missing_neighbor, non_neighbors_distance, totalAttNum, numAttPerPH); end %add the new UNK node to the missing nodes mapping j is the index of the missing node %look for the first zero in column j of the missing nodes mapping and put the new node %index there added_node = 0; %add it in the first position which equals zero %sigal 23.1.14 - find index according to actual structure (not sorted) j = find( missing_nodes_mapping(1,:) == curr_missing_neighbor, 1); for k = 1 : size(missing_nodes_mapping,1) if missing_nodes_mapping(k, j) == 0 %if we start with 1000 nodes, and we have 5 missing nodes, after %adding one node at this point, the size of the graph is 1001. 5 nodes %will be removed so the correct index of the new node will be 1001 - 5 = 996. %The next one is 997 and so on. missing_nodes_mapping(k, j) = size(data,1) - num_missing_nodes; added_node = 1; break; end end %if all the column is non-zero, add a new row and put it there if added_node == 0 missing_nodes_mapping = [missing_nodes_mapping; zeros(1, size(missing_nodes_mapping,2))]; missing_nodes_mapping(size(missing_nodes_mapping,1), j) = size(data,1) - num_missing_nodes; end end %if friend end %missing_neighbors end %missing_nodes_all_neighbors end % if getting missingNodesInput %remove the missing nodes from the matrix (missing nodes MUST be sorted in descending order!! %so that removing one does not affect the index of the others) for j = 1:size(missing_nodes_list,2) missing_node_idx = missing_nodes_list(j); %remove column data(:, missing_node_idx) = []; %remove row data(missing_node_idx, :) = []; % sigal 31.1.14 - support remove without attributes if totalAttNum > 0 attData(missing_node_idx, :) = []; end end end %function RemoveRandomNodes3 %sigal - move old implementation to function function [missing_nodes] = ChooseMissingNodes(num_nodes_to_remove, data, attData, totalAttNum, numAttPerPH, missing_nodes_mapping, numImagesProfiles) missing_nodes_all_neighbors = zeros(1, size(data,2)); %randomize a list of nodes to remove and sort it if size(missing_nodes_mapping,1)> 0 %Sigal 23.1.14 - second row is the profile mapping missing_nodes = missing_nodes_mapping(1:2,:); %%sort(missing_nodes_mapping(1,:) , 2, 'descend'); %find all missing node neighbors for curr_missing_node = missing_nodes(1,:) % first row is the removed nodes missing_nodes_all_neighbors = missing_nodes_all_neighbors | data(curr_missing_node,:); missing_nodes_all_neighbors(1,curr_missing_node)=1; end else missing_nodes = []; end % outlier1 - nodes with only one edge numEdges = sum(data,1); invalidNodes1a = (numEdges==1); %%numEdges<3); %%(numEdges==1); missing_nodes_all_neighbors(1,invalidNodes1a) = 1; %invalidNodes1b = (numEdges>7); %% 6.13 (mem issues) use 7 %invalidNodes1b = (numEdges>15); %%25); %%(numEdges==1); %% sigal - 6.2.13 max=15 (sarit) invalidNodes1b = (numEdges>8); %%15); %% sigal/sarit - 9.12.13 max=8 missing_nodes_all_neighbors(1,invalidNodes1b) = 1; % outlier2 - nodes with less than numAttPerPH attributes % sigal 31.1.14 - support remove without attributes if totalAttNum > 0 && numAttPerPH > 0 numAttr = sum(attData,2)'; invalidNodes2 = (numAttr size(data,2) fprintf('RemoveRandomNodes2: too many outliers nodes %d.\n',count); end %sigal - 23.1.14 - choose image profile imagesProfiles = 1:1:numImagesProfiles; if size(missing_nodes,1)> 0 usedProfiles = missing_nodes(2,:); imagesProfiles(usedProfiles)=[]; end for i=1:num_nodes_to_remove valid_nodes = find(missing_nodes_all_neighbors~=1); %inx = ceil(rand(1)*size(valid_nodes,2)); inx = size(data,2)-1; %node = valid_nodes(inx); node = size(data,2); %sigal - 23.1.14 - choose image profile profile = ceil(rand(1)*size(imagesProfiles,2)); newNode = [node;imagesProfiles(profile)]; imagesProfiles(profile) = []; % add selected node to missing_nodes list and update the all neighbors list missing_nodes = [missing_nodes newNode]; missing_nodes_all_neighbors(1,node)=1; missing_nodes_all_neighbors = missing_nodes_all_neighbors | data(node,:); end end %ChooseMissingNodes % sigal - append col & row for the placeholder function [data] = ExpandDataByOne(data, friend, non_neighbors_distance) new_col = ones(size(data, 1), 1) * non_neighbors_distance; new_col(friend) = 1; data = [data new_col]; new_row = ones(1,size(data, 2)) * non_neighbors_distance; new_row(friend) = 1; data = [data; new_row]; data(size(data, 1), size(data,2)) = 0; end %ExpandDataByOne % sigal - append row for the placeholder function [attData] = ExpandAttByOne(attData, orgNode, non_neighbors_distance, totalAttNum, numAttPerPH) if totalAttNum>0 && numAttPerPH>0 attIndices = find(attData(orgNode, :)==1); while size(attIndices,2) > numAttPerPH inx = ceil(rand(1)*size(attIndices,2)); attIndices(:,inx) = []; end else attIndices=[]; end new_row = ones(1,size(attData, 2)) * non_neighbors_distance; for i=1:size(attIndices,2) new_row(i)=1; end attData = [attData; new_row]; end %ExpandAttByOne