|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- function [ best_dist ] = GraphEditDistance( g1, g2, num_missing_nodes)
- %GraphEditDistance - calculate the distance between two graphs with missing
- %nodes
- % Detailed explanation goes here
-
-
- %simulated annealing parameters
- c = 0.9;
- start_temp = 1000;
- t = start_temp;
-
- round = 0;
- n = size(g1,1);
- m = size(g2,1);
-
- %get the maximal size of the two graphs
- N = max(n,m);
-
- %if the number of missing nodes is not given, perform the search on all the
- %nodes
- if nargin < 3
- num_missing_nodes = N;
- end
-
- max_iterations = N;
-
- init_distance = 0;
-
- %make the two graphs the same size by padding zeros
- if n < N
- %g1 is smaller, make it NxN
- g1(N,N) = 0;
- %the penalty is N-n because we added this number of nodes
- init_distance = N - n;
- end
- if m < N
- %g2 is smaller, make it NxN and add a penalty of N-m
- g2(N,N) = 0;
- init_distance = N - m;
- end
-
- %%%distance = sum(sum(abs(g1 - g2))) / 2;
-
- best_dist = Inf;
- for restart = 1 : N*N/4 % sigal 24.12.12 - add 1/4 factor as no improvement seen after N*N/4
-
- %create a matching vector between the two matrices
- %the first K nodes are known nodes and therefore they match (where
- %K = N-num_missing_nodes
- %the vector will look like this:
- %[1,2,3,...,K, ***random permutation of the numbers between K+1 and N***]
- matching= [1:N-num_missing_nodes, randperm(num_missing_nodes) + N - num_missing_nodes];
- try
- %transform g2 according to the permutation, simply by switching
- %rows and columns according to the matching vector
- perm_graph = g2(matching, matching);
- catch ME1
- x = 90;
- end
-
- num_failures = 0;
- iter = 0;
- while num_failures < N %&& iter < max_iterations
- iter = iter+1;
- i = randi(num_missing_nodes,1) + N - num_missing_nodes;
- j = randi(num_missing_nodes,1) + N - num_missing_nodes;
-
- %should we swap i and j?
-
- row_i = perm_graph(i,:);
- row_j = perm_graph(j,:);
-
- %calculate the current distance due to rows i and j
- curr_dist = sum(abs(g1(i,:) - row_i)) + sum(abs(g1(j,:) - row_j));
-
- temp = row_i(i);
- row_i(i) = row_i(j);
- row_i(j) = temp;
-
- temp = row_j(i);
- row_j(i) = row_j(j);
- row_j(j) = temp;
-
- %calculate the distance due to rows i and j after swapping them
- new_dist = sum(abs(g1(i,:) - row_j)) + sum(abs(g1(j,:) - row_i));
-
- %if swapping causes an improvement, or randomly according to
- %simulated annealing:
- if new_dist < curr_dist || (rand(1) < exp( - (new_dist - curr_dist) / (c*t) ) && new_dist ~= curr_dist)
-
-
- %temp = exp( - (new_dist - curr_dist) / (c*t) )
- %swap the "matching" indexes
- temp = matching(i);
- matching(i) = matching(j);
- matching(j) = temp;
-
- %swap rows i and j
- temp = perm_graph(i,:);
- perm_graph(i,:) = perm_graph(j,:);
- perm_graph(j,:) = temp;
-
- %swap columns i and j
- temp = perm_graph(:,i);
- perm_graph(:,i) = perm_graph(:,j);
- perm_graph(:,j) = temp;
-
- num_failures = 0;
-
- round = round+1;
-
- t = t*c;
-
- else
- num_failures = num_failures + 1;
- end
- end
-
- distance = sum(sum(abs(g1 - perm_graph)));
-
- if distance < best_dist
- best_dist = distance;
- fprintf('restart %d, best_dist %d, N %d\n', full(restart), full(best_dist), full(N));
- end
-
-
- end
- %divide by 2 due to symmetry
- best_dist = best_dist / 2 + init_distance;
-
- end
-
|