You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

main_DeepGMG.py 30KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768
  1. # an implementation for "Learning Deep Generative Models of Graphs"
  2. from baselines.graphvae.util import load_data
  3. from main import *
  4. from statistics import mean
  5. import networkx as nx
  6. import numpy as np
  7. from sklearn.metrics import roc_auc_score, average_precision_score
  8. class Args_DGMG():
  9. def __init__(self):
  10. ### CUDA
  11. self.cuda = 0
  12. ### model type
  13. self.note = 'Baseline_DGMG' # do GCN after adding each edge
  14. # self.note = 'Baseline_DGMG_fast' # do GCN only after adding each node
  15. ### data config
  16. # self.graph_type = 'caveman_small'
  17. # self.graph_type = 'grid_small'
  18. self.graph_type = 'IMDBMULTI'
  19. # self.graph_type = 'ladder_small'
  20. # self.graph_type = 'enzymes_small'
  21. # self.graph_type = 'barabasi_small'
  22. # self.graph_type = 'citeseer_small'
  23. self.max_num_node = 20
  24. ### network config
  25. self.node_embedding_size = 64
  26. self.test_graph_num = 200
  27. ### training config
  28. self.epochs = 2000 # now one epoch means self.batch_ratio x batch_size
  29. self.load_epoch = 2000
  30. self.epochs_test_start = 100
  31. self.epochs_test = 100
  32. self.epochs_log = 2
  33. self.epochs_save = 100
  34. if 'fast' in self.note:
  35. self.is_fast = True
  36. else:
  37. self.is_fast = False
  38. self.lr = 0.001
  39. self.milestones = [300, 600, 1000]
  40. self.lr_rate = 0.3
  41. ### output config
  42. self.model_save_path = 'model_save/'
  43. self.graph_save_path = 'graphs/'
  44. self.figure_save_path = 'figures/'
  45. self.timing_save_path = 'timing/'
  46. self.figure_prediction_save_path = 'figures_prediction/'
  47. self.nll_save_path = 'nll/'
  48. self.fname = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size)
  49. self.fname_pred = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_pred_'
  50. self.fname_train = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_train_'
  51. self.fname_test = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_test_'
  52. self.load = False
  53. self.save = True
  54. def train_DGMG_epoch(epoch, args, model, dataset, optimizer, scheduler, is_fast=False):
  55. model.train()
  56. graph_num = len(dataset)
  57. order = list(range(graph_num))
  58. shuffle(order)
  59. loss_addnode = 0
  60. loss_addedge = 0
  61. loss_node = 0
  62. for i in order:
  63. model.zero_grad()
  64. graph = dataset[i]
  65. # do random ordering: relabel nodes
  66. node_order = list(range(graph.number_of_nodes()))
  67. shuffle(node_order)
  68. order_mapping = dict(zip(graph.nodes(), node_order))
  69. graph = nx.relabel_nodes(graph, order_mapping, copy=True)
  70. # NOTE: when starting loop, we assume a node has already been generated
  71. node_count = 1
  72. node_embedding = [
  73. Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden
  74. loss = 0
  75. while node_count <= graph.number_of_nodes():
  76. node_neighbor = graph.subgraph(
  77. list(range(node_count))).adjacency_list() # list of lists (first node is zero)
  78. node_neighbor_new = graph.subgraph(list(range(node_count + 1))).adjacency_list()[
  79. -1] # list of new node's neighbors
  80. # 1 message passing
  81. # do 2 times message passing
  82. node_embedding = message_passing(node_neighbor, node_embedding, model)
  83. # 2 graph embedding and new node embedding
  84. node_embedding_cat = torch.cat(node_embedding, dim=0)
  85. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  86. init_embedding = calc_init_embedding(node_embedding_cat, model)
  87. # 3 f_addnode
  88. p_addnode = model.f_an(graph_embedding)
  89. if node_count < graph.number_of_nodes():
  90. # add node
  91. node_neighbor.append([])
  92. node_embedding.append(init_embedding)
  93. if is_fast:
  94. node_embedding_cat = torch.cat(node_embedding, dim=0)
  95. # calc loss
  96. loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.ones((1, 1))).cuda())
  97. # loss_addnode_step.backward(retain_graph=True)
  98. loss += loss_addnode_step
  99. loss_addnode += loss_addnode_step.data
  100. else:
  101. # calc loss
  102. loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.zeros((1, 1))).cuda())
  103. # loss_addnode_step.backward(retain_graph=True)
  104. loss += loss_addnode_step
  105. loss_addnode += loss_addnode_step.data
  106. break
  107. edge_count = 0
  108. while edge_count <= len(node_neighbor_new):
  109. if not is_fast:
  110. node_embedding = message_passing(node_neighbor, node_embedding, model)
  111. node_embedding_cat = torch.cat(node_embedding, dim=0)
  112. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  113. # 4 f_addedge
  114. p_addedge = model.f_ae(graph_embedding)
  115. if edge_count < len(node_neighbor_new):
  116. # calc loss
  117. loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.ones((1, 1))).cuda())
  118. # loss_addedge_step.backward(retain_graph=True)
  119. loss += loss_addedge_step
  120. loss_addedge += loss_addedge_step.data
  121. # 5 f_nodes
  122. # excluding the last node (which is the new node)
  123. node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
  124. node_embedding_cat.size(1))
  125. s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
  126. p_node = F.softmax(s_node.permute(1, 0))
  127. # get ground truth
  128. a_node = torch.zeros((1, p_node.size(1)))
  129. # print('node_neighbor_new',node_neighbor_new, edge_count)
  130. a_node[0, node_neighbor_new[edge_count]] = 1
  131. a_node = Variable(a_node).cuda()
  132. # add edge
  133. node_neighbor[-1].append(node_neighbor_new[edge_count])
  134. node_neighbor[node_neighbor_new[edge_count]].append(len(node_neighbor) - 1)
  135. # calc loss
  136. loss_node_step = F.binary_cross_entropy(p_node, a_node)
  137. # loss_node_step.backward(retain_graph=True)
  138. loss += loss_node_step
  139. loss_node += loss_node_step.data
  140. else:
  141. # calc loss
  142. loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.zeros((1, 1))).cuda())
  143. # loss_addedge_step.backward(retain_graph=True)
  144. loss += loss_addedge_step
  145. loss_addedge += loss_addedge_step.data
  146. break
  147. edge_count += 1
  148. node_count += 1
  149. # update deterministic and lstm
  150. loss.backward()
  151. optimizer.step()
  152. scheduler.step()
  153. loss_all = loss_addnode + loss_addedge + loss_node
  154. if epoch % args.epochs_log == 0:
  155. print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, hidden: {}'.format(
  156. epoch, args.epochs, loss_all.item(), args.graph_type, args.node_embedding_size))
  157. # loss_sum += loss.data[0]*x.size(0)
  158. # return loss_sum
  159. def train_DGMG_forward_epoch(args, model, dataset, is_fast=False):
  160. model.train()
  161. graph_num = len(dataset)
  162. order = list(range(graph_num))
  163. shuffle(order)
  164. loss_addnode = 0
  165. loss_addedge = 0
  166. loss_node = 0
  167. for i in order:
  168. model.zero_grad()
  169. graph = dataset[i]
  170. # do random ordering: relabel nodes
  171. node_order = list(range(graph.number_of_nodes()))
  172. shuffle(node_order)
  173. order_mapping = dict(zip(graph.nodes(), node_order))
  174. graph = nx.relabel_nodes(graph, order_mapping, copy=True)
  175. # NOTE: when starting loop, we assume a node has already been generated
  176. node_count = 1
  177. node_embedding = [
  178. Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden
  179. loss = 0
  180. while node_count <= graph.number_of_nodes():
  181. node_neighbor = graph.subgraph(
  182. list(range(node_count))).adjacency_list() # list of lists (first node is zero)
  183. node_neighbor_new = graph.subgraph(list(range(node_count + 1))).adjacency_list()[
  184. -1] # list of new node's neighbors
  185. # 1 message passing
  186. # do 2 times message passing
  187. node_embedding = message_passing(node_neighbor, node_embedding, model)
  188. # 2 graph embedding and new node embedding
  189. node_embedding_cat = torch.cat(node_embedding, dim=0)
  190. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  191. init_embedding = calc_init_embedding(node_embedding_cat, model)
  192. # 3 f_addnode
  193. p_addnode = model.f_an(graph_embedding)
  194. if node_count < graph.number_of_nodes():
  195. # add node
  196. node_neighbor.append([])
  197. node_embedding.append(init_embedding)
  198. if is_fast:
  199. node_embedding_cat = torch.cat(node_embedding, dim=0)
  200. # calc loss
  201. loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.ones((1, 1))).cuda())
  202. # loss_addnode_step.backward(retain_graph=True)
  203. loss += loss_addnode_step
  204. loss_addnode += loss_addnode_step.data
  205. else:
  206. # calc loss
  207. loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.zeros((1, 1))).cuda())
  208. # loss_addnode_step.backward(retain_graph=True)
  209. loss += loss_addnode_step
  210. loss_addnode += loss_addnode_step.data
  211. break
  212. edge_count = 0
  213. while edge_count <= len(node_neighbor_new):
  214. if not is_fast:
  215. node_embedding = message_passing(node_neighbor, node_embedding, model)
  216. node_embedding_cat = torch.cat(node_embedding, dim=0)
  217. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  218. # 4 f_addedge
  219. p_addedge = model.f_ae(graph_embedding)
  220. if edge_count < len(node_neighbor_new):
  221. # calc loss
  222. loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.ones((1, 1))).cuda())
  223. # loss_addedge_step.backward(retain_graph=True)
  224. loss += loss_addedge_step
  225. loss_addedge += loss_addedge_step.data
  226. # 5 f_nodes
  227. # excluding the last node (which is the new node)
  228. node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
  229. node_embedding_cat.size(1))
  230. s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
  231. p_node = F.softmax(s_node.permute(1, 0))
  232. # get ground truth
  233. a_node = torch.zeros((1, p_node.size(1)))
  234. # print('node_neighbor_new',node_neighbor_new, edge_count)
  235. a_node[0, node_neighbor_new[edge_count]] = 1
  236. a_node = Variable(a_node).cuda()
  237. # add edge
  238. node_neighbor[-1].append(node_neighbor_new[edge_count])
  239. node_neighbor[node_neighbor_new[edge_count]].append(len(node_neighbor) - 1)
  240. # calc loss
  241. loss_node_step = F.binary_cross_entropy(p_node, a_node)
  242. # loss_node_step.backward(retain_graph=True)
  243. loss += loss_node_step
  244. loss_node += loss_node_step.data * p_node.size(1)
  245. else:
  246. # calc loss
  247. loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.zeros((1, 1))).cuda())
  248. # loss_addedge_step.backward(retain_graph=True)
  249. loss += loss_addedge_step
  250. loss_addedge += loss_addedge_step.data
  251. break
  252. edge_count += 1
  253. node_count += 1
  254. loss_all = loss_addnode + loss_addedge + loss_node
  255. # if epoch % args.epochs_log==0:
  256. # print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, hidden: {}'.format(
  257. # epoch, args.epochs,loss_all[0], args.graph_type, args.node_embedding_size))
  258. return loss_all[0] / len(dataset)
  259. def test_DGMG_epoch(args, model, is_fast=False):
  260. model.eval()
  261. graph_num = args.test_graph_num
  262. graphs_generated = []
  263. for i in range(graph_num):
  264. # NOTE: when starting loop, we assume a node has already been generated
  265. node_neighbor = [[]] # list of lists (first node is zero)
  266. node_embedding = [
  267. Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden
  268. node_count = 1
  269. while node_count <= args.max_num_node:
  270. # 1 message passing
  271. # do 2 times message passing
  272. node_embedding = message_passing(node_neighbor, node_embedding, model)
  273. # 2 graph embedding and new node embedding
  274. node_embedding_cat = torch.cat(node_embedding, dim=0)
  275. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  276. init_embedding = calc_init_embedding(node_embedding_cat, model)
  277. # 3 f_addnode
  278. p_addnode = model.f_an(graph_embedding)
  279. a_addnode = sample_tensor(p_addnode)
  280. # print(a_addnode.data[0][0])
  281. if a_addnode.data[0][0] == 1:
  282. # print('add node')
  283. # add node
  284. node_neighbor.append([])
  285. node_embedding.append(init_embedding)
  286. if is_fast:
  287. node_embedding_cat = torch.cat(node_embedding, dim=0)
  288. else:
  289. break
  290. edge_count = 0
  291. while edge_count < args.max_num_node:
  292. if not is_fast:
  293. node_embedding = message_passing(node_neighbor, node_embedding, model)
  294. node_embedding_cat = torch.cat(node_embedding, dim=0)
  295. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  296. # 4 f_addedge
  297. p_addedge = model.f_ae(graph_embedding)
  298. a_addedge = sample_tensor(p_addedge)
  299. # print(a_addedge.data[0][0])
  300. if a_addedge.data[0][0] == 1:
  301. # print('add edge')
  302. # 5 f_nodes
  303. # excluding the last node (which is the new node)
  304. node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
  305. node_embedding_cat.size(1))
  306. s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
  307. p_node = F.softmax(s_node.permute(1, 0))
  308. a_node = gumbel_softmax(p_node, temperature=0.01)
  309. _, a_node_id = a_node.topk(1)
  310. a_node_id = int(a_node_id.data[0][0])
  311. # add edge
  312. node_neighbor[-1].append(a_node_id)
  313. node_neighbor[a_node_id].append(len(node_neighbor) - 1)
  314. else:
  315. break
  316. edge_count += 1
  317. node_count += 1
  318. # save graph
  319. node_neighbor_dict = dict(zip(list(range(len(node_neighbor))), node_neighbor))
  320. graph = nx.from_dict_of_lists(node_neighbor_dict)
  321. graphs_generated.append(graph)
  322. return graphs_generated
  323. ########### train function for LSTM + VAE
  324. def train_DGMG(args, dataset_train, model):
  325. # check if load existing model
  326. if args.load:
  327. fname = args.model_save_path + args.fname + 'model_' + str(args.load_epoch) + '.dat'
  328. model.load_state_dict(torch.load(fname))
  329. args.lr = 0.00001
  330. epoch = args.load_epoch
  331. print('model loaded!, lr: {}'.format(args.lr))
  332. else:
  333. epoch = 1
  334. # initialize optimizer
  335. optimizer = optim.Adam(list(model.parameters()), lr=args.lr)
  336. scheduler = MultiStepLR(optimizer, milestones=args.milestones, gamma=args.lr_rate)
  337. # start main loop
  338. time_all = np.zeros(args.epochs)
  339. while epoch <= args.epochs:
  340. time_start = tm.time()
  341. # train
  342. train_DGMG_epoch(epoch, args, model, dataset_train, optimizer, scheduler, is_fast=args.is_fast)
  343. time_end = tm.time()
  344. time_all[epoch - 1] = time_end - time_start
  345. # print('time used',time_all[epoch - 1])
  346. # test
  347. if epoch % args.epochs_test == 0 and epoch >= args.epochs_test_start:
  348. graphs = test_DGMG_epoch(args, model, is_fast=args.is_fast)
  349. fname = args.graph_save_path + args.fname_pred + str(epoch) + '.dat'
  350. save_graph_list(graphs, fname)
  351. # print('test done, graphs saved')
  352. # save model checkpoint
  353. if args.save:
  354. if epoch % args.epochs_save == 0:
  355. fname = args.model_save_path + args.fname + 'model_' + str(epoch) + '.dat'
  356. torch.save(model.state_dict(), fname)
  357. epoch += 1
  358. np.save(args.timing_save_path + args.fname, time_all)
  359. ########### train function for LSTM + VAE
  360. def train_DGMG_nll(args, dataset_train, dataset_test, model, max_iter=1000):
  361. # check if load existing model
  362. fname = args.model_save_path + args.fname + 'model_' + str(args.load_epoch) + '.dat'
  363. model.load_state_dict(torch.load(fname))
  364. fname_output = args.nll_save_path + args.note + '_' + args.graph_type + '.csv'
  365. with open(fname_output, 'w+') as f:
  366. f.write('train,test\n')
  367. # start main loop
  368. for iter in range(max_iter):
  369. nll_train = train_DGMG_forward_epoch(args, model, dataset_train, is_fast=args.is_fast)
  370. nll_test = train_DGMG_forward_epoch(args, model, dataset_test, is_fast=args.is_fast)
  371. print('train', nll_train, 'test', nll_test)
  372. f.write(str(nll_train) + ',' + str(nll_test) + '\n')
  373. def test_DGMG_2(args, model, test_graph, is_fast=False):
  374. model.eval()
  375. graph_num = args.test_graph_num
  376. graphs_generated = []
  377. # for i in range(graph_num):
  378. # NOTE: when starting loop, we assume a node has already been generated
  379. node_neighbor = [[]] # list of lists (first node is zero)
  380. node_embedding = [
  381. Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden
  382. node_max = len(test_graph.nodes())
  383. node_count = 1
  384. while node_count <= node_max:
  385. # 1 message passing
  386. # do 2 times message passing
  387. node_embedding = message_passing(node_neighbor, node_embedding, model)
  388. # 2 graph embedding and new node embedding
  389. node_embedding_cat = torch.cat(node_embedding, dim=0)
  390. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  391. init_embedding = calc_init_embedding(node_embedding_cat, model)
  392. # 3 f_addnode
  393. p_addnode = model.f_an(graph_embedding)
  394. a_addnode = sample_tensor(p_addnode)
  395. if a_addnode.data[0][0] == 1:
  396. # add node
  397. node_neighbor.append([])
  398. node_embedding.append(init_embedding)
  399. if is_fast:
  400. node_embedding_cat = torch.cat(node_embedding, dim=0)
  401. else:
  402. break
  403. edge_count = 0
  404. while edge_count < args.max_num_node:
  405. if not is_fast:
  406. node_embedding = message_passing(node_neighbor, node_embedding, model)
  407. node_embedding_cat = torch.cat(node_embedding, dim=0)
  408. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  409. # 4 f_addedge
  410. p_addedge = model.f_ae(graph_embedding)
  411. a_addedge = sample_tensor(p_addedge)
  412. if a_addedge.data[0][0] == 1:
  413. # 5 f_nodes
  414. # excluding the last node (which is the new node)
  415. node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
  416. node_embedding_cat.size(1))
  417. s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
  418. p_node = F.softmax(s_node.permute(1, 0))
  419. a_node = gumbel_softmax(p_node, temperature=0.01)
  420. _, a_node_id = a_node.topk(1)
  421. a_node_id = int(a_node_id.data[0][0])
  422. # add edge
  423. node_neighbor[-1].append(a_node_id)
  424. node_neighbor[a_node_id].append(len(node_neighbor) - 1)
  425. else:
  426. break
  427. edge_count += 1
  428. node_count += 1
  429. # clear node_neighbor and build it again
  430. node_neighbor = []
  431. for n in range(node_max):
  432. temp_neighbor = [k for k in test_graph.edge[n]]
  433. node_neighbor.append(temp_neighbor)
  434. # now add the last node for real
  435. # 1 message passing
  436. # do 2 times message passing
  437. try:
  438. node_embedding = message_passing(node_neighbor, node_embedding, model)
  439. # 2 graph embedding and new node embedding
  440. node_embedding_cat = torch.cat(node_embedding, dim=0)
  441. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  442. init_embedding = calc_init_embedding(node_embedding_cat, model)
  443. # 3 f_addnode
  444. p_addnode = model.f_an(graph_embedding)
  445. a_addnode = sample_tensor(p_addnode)
  446. if a_addnode.data[0][0] == 1:
  447. # add node
  448. node_neighbor.append([])
  449. node_embedding.append(init_embedding)
  450. if is_fast:
  451. node_embedding_cat = torch.cat(node_embedding, dim=0)
  452. edge_count = 0
  453. while edge_count < args.max_num_node:
  454. if not is_fast:
  455. node_embedding = message_passing(node_neighbor, node_embedding, model)
  456. node_embedding_cat = torch.cat(node_embedding, dim=0)
  457. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  458. # 4 f_addedge
  459. p_addedge = model.f_ae(graph_embedding)
  460. a_addedge = sample_tensor(p_addedge)
  461. if a_addedge.data[0][0] == 1:
  462. # 5 f_nodes
  463. # excluding the last node (which is the new node)
  464. node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
  465. node_embedding_cat.size(1))
  466. s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
  467. p_node = F.softmax(s_node.permute(1, 0))
  468. a_node = gumbel_softmax(p_node, temperature=0.01)
  469. _, a_node_id = a_node.topk(1)
  470. a_node_id = int(a_node_id.data[0][0])
  471. # add edge
  472. node_neighbor[-1].append(a_node_id)
  473. node_neighbor[a_node_id].append(len(node_neighbor) - 1)
  474. else:
  475. break
  476. edge_count += 1
  477. node_count += 1
  478. except:
  479. print('error')
  480. # save graph
  481. node_neighbor_dict = dict(zip(list(range(len(node_neighbor))), node_neighbor))
  482. graph = nx.from_dict_of_lists(node_neighbor_dict)
  483. return graph
  484. def neigh_to_mat(neigh, size):
  485. ret_list = np.zeros(size)
  486. for i in neigh:
  487. ret_list[i] = 1
  488. return ret_list
  489. def calc_lable_result(test_graphs, returned_graphs):
  490. labels = []
  491. results = []
  492. i = 0
  493. for test_graph in test_graphs:
  494. n = len(test_graph.nodes())
  495. returned_graph = returned_graphs[i]
  496. label = neigh_to_mat([k for k in test_graph.edge[n - 1]], n)
  497. try:
  498. result = neigh_to_mat([k for k in returned_graph.edge[n - 1]], n)
  499. except:
  500. result = np.zeros(n)
  501. labels.append(label)
  502. results.append(result)
  503. i += 1
  504. return labels, results
  505. def evaluate(labels, results):
  506. mae_list = []
  507. roc_score_list = []
  508. ap_score_list = []
  509. precision_list = []
  510. recall_list = []
  511. iter = 0
  512. for result in results:
  513. label = labels[iter]
  514. iter += 1
  515. part1 = label[result == 1]
  516. part2 = part1[part1 == 1]
  517. part3 = part1[part1 == 0]
  518. part4 = label[result == 0]
  519. part5 = part4[part4 == 1]
  520. tp = len(part2)
  521. fp = len(part3)
  522. fn = part5.sum()
  523. if tp + fp > 0:
  524. precision = tp / (tp + fp)
  525. else:
  526. precision = 0
  527. recall = tp / (tp + fn)
  528. precision_list.append(precision)
  529. recall_list.append(recall)
  530. positive = result[label == 1]
  531. if len(positive) <= len(list(result[label == 0])):
  532. negative = random.sample(list(result[label == 0]), len(positive))
  533. else:
  534. negative = result[label == 0]
  535. positive = random.sample(list(result[label == 1]), len(negative))
  536. preds_all = np.hstack([positive, negative])
  537. labels_all = np.hstack([np.ones(len(positive)), np.zeros(len(positive))])
  538. if len(labels_all) > 0:
  539. roc_score = roc_auc_score(labels_all, preds_all)
  540. ap_score = average_precision_score(labels_all, preds_all)
  541. roc_score_list.append(roc_score)
  542. ap_score_list.append(ap_score)
  543. mae = 0
  544. for x in range(len(result)):
  545. if result[x] != label[x]:
  546. mae += 1
  547. mae = mae / len(label)
  548. mae_list.append(mae)
  549. mean_roc = mean(roc_score_list)
  550. mean_ap = mean(ap_score_list)
  551. mean_precision = mean(precision_list)
  552. mean_recall = mean(recall_list)
  553. mean_mae = mean(mae_list)
  554. print('roc_score ' + str(mean_roc))
  555. print('ap_score ' + str(mean_ap))
  556. print('precision ' + str(mean_precision))
  557. print('recall ' + str(mean_recall))
  558. print('mae ' + str(mean_mae))
  559. return mean_roc, mean_ap, mean_precision, mean_recall
  560. if __name__ == '__main__':
  561. args = Args_DGMG()
  562. os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda)
  563. print('CUDA', args.cuda)
  564. print('File name prefix', args.fname)
  565. graphs = []
  566. for i in range(4, 10):
  567. graphs.append(nx.ladder_graph(i))
  568. model = DGM_graphs(h_size=args.node_embedding_size).cuda()
  569. if args.graph_type == 'ladder_small':
  570. graphs = []
  571. for i in range(2, 11):
  572. graphs.append(nx.ladder_graph(i))
  573. args.max_prev_node = 10
  574. if args.graph_type == 'caveman_small':
  575. graphs = []
  576. for i in range(2, 3):
  577. for j in range(6, 11):
  578. for k in range(20):
  579. graphs.append(caveman_special(i, j, p_edge=0.8))
  580. args.max_prev_node = 20
  581. if args.graph_type == 'grid_small':
  582. graphs = []
  583. for i in range(2, 4):
  584. for j in range(2, 4):
  585. graphs.append(nx.grid_2d_graph(i, j))
  586. args.max_prev_node = 15
  587. if args.graph_type == 'barabasi_small':
  588. graphs = []
  589. for i in range(4, 21):
  590. for j in range(3, 4):
  591. for k in range(10):
  592. graphs.append(nx.barabasi_albert_graph(i, j))
  593. args.max_prev_node = 20
  594. if args.graph_type == 'enzymes_small':
  595. graphs_raw = Graph_load_batch(min_num_nodes=10, name='ENZYMES')
  596. graphs = []
  597. for G in graphs_raw:
  598. if G.number_of_nodes() <= 20:
  599. graphs.append(G)
  600. args.max_prev_node = 15
  601. if args.graph_type == 'citeseer_small':
  602. _, _, G = Graph_load(dataset='citeseer')
  603. G = max(nx.connected_component_subgraphs(G), key=len)
  604. G = nx.convert_node_labels_to_integers(G)
  605. graphs = []
  606. for i in range(G.number_of_nodes()):
  607. G_ego = nx.ego_graph(G, i, radius=1)
  608. if (G_ego.number_of_nodes() >= 4) and (G_ego.number_of_nodes() <= 20):
  609. graphs.append(G_ego)
  610. shuffle(graphs)
  611. graphs = graphs[0:200]
  612. args.max_prev_node = 15
  613. else:
  614. graphs, num_classes = load_data(args.graph_type, True)
  615. small_graphs = []
  616. for i in range(len(graphs)):
  617. if graphs[i].number_of_nodes() < 13:
  618. small_graphs.append(graphs[i])
  619. graphs = small_graphs
  620. args.max_prev_node = 12
  621. # remove self loops
  622. for graph in graphs:
  623. edges_with_selfloops = graph.selfloop_edges()
  624. if len(edges_with_selfloops) > 0:
  625. graph.remove_edges_from(edges_with_selfloops)
  626. # split datasets
  627. random.seed(123)
  628. shuffle(graphs)
  629. graphs_len = len(graphs)
  630. graphs_test = graphs[int(0.8 * graphs_len):]
  631. graphs_train = graphs[0:int(0.8 * graphs_len)]
  632. args.max_num_node = max([graphs[i].number_of_nodes() for i in range(len(graphs))])
  633. # show graphs statistics
  634. print('total graph num: {}, training set: {}'.format(len(graphs), len(graphs_train)))
  635. print('max number node: {}'.format(args.max_num_node))
  636. print('max previous node: {}'.format(args.max_prev_node))
  637. ### train
  638. train_DGMG(args, graphs_train, model)
  639. fname = args.model_save_path + args.fname + 'model_' + str(args.load_epoch) + '.dat'
  640. model.load_state_dict(torch.load(fname))
  641. all_tests = list()
  642. all_ret_test = list()
  643. for test_graph in graphs_test:
  644. test_graph = nx.convert_node_labels_to_integers(test_graph)
  645. test_graph.remove_node(test_graph.nodes()[len(test_graph.nodes()) - 1])
  646. ret_test = test_DGMG_2(args, model, test_graph)
  647. all_tests.append(test_graph)
  648. all_ret_test.append(ret_test)
  649. labels, results = calc_lable_result(test_graph, ret_test)
  650. evaluate(labels, results)