123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581 |
- # an implementation for "Learning Deep Generative Models of Graphs"
- import os
-
- import random
- from statistics import mean
-
- import networkx as nx
- import numpy as np
- from sklearn.metrics import roc_auc_score, average_precision_score
-
- from main import *
-
-
- class Args_DGMG():
- def __init__(self):
- ### CUDA
- self.cuda = 0
-
- ### model type
- self.note = 'Baseline_DGMG' # do GCN after adding each edge
- # self.note = 'Baseline_DGMG_fast' # do GCN only after adding each node
-
- ### data config
- # self.graph_type = 'caveman_small'
- self.graph_type = 'grid_small'
- # self.graph_type = 'ladder_small'
- # self.graph_type = 'enzymes_small'
- # self.graph_type = 'barabasi_small'
- # self.graph_type = 'citeseer_small'
-
- self.max_num_node = 20
-
- ### network config
- self.node_embedding_size = 64
- self.test_graph_num = 200
-
- ### training config
- self.epochs = 100 # now one epoch means self.batch_ratio x batch_size
- self.load_epoch = 100
- self.epochs_test_start = 10
- self.epochs_test = 10
- self.epochs_log = 10
- self.epochs_save = 10
- if 'fast' in self.note:
- self.is_fast = True
- else:
- self.is_fast = False
-
- self.lr = 0.001
- self.milestones = [300, 600, 1000]
- self.lr_rate = 0.3
-
- ### output config
- self.model_save_path = 'model_save/'
- self.graph_save_path = 'graphs/'
- self.figure_save_path = 'figures/'
- self.timing_save_path = 'timing/'
- self.figure_prediction_save_path = 'figures_prediction/'
- self.nll_save_path = 'nll/'
-
- self.fname = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size)
- self.fname_pred = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_pred_'
- self.fname_train = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_train_'
- self.fname_test = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_test_'
-
- self.load = False
- self.save = True
-
-
- def train_DGMG_epoch(epoch, args, model, dataset, optimizer, scheduler, is_fast=False):
- model.train()
- graph_num = len(dataset)
- order = list(range(graph_num))
- shuffle(order)
-
- loss_addnode = 0
- loss_addedge = 0
- loss_node = 0
- for i in order:
- model.zero_grad()
-
- graph = dataset[i]
- # do random ordering: relabel nodes
- node_order = list(range(graph.number_of_nodes()))
- shuffle(node_order)
- order_mapping = dict(zip(graph.nodes(), node_order))
- graph = nx.relabel_nodes(graph, order_mapping, copy=True)
-
- # NOTE: when starting loop, we assume a node has already been generated
- node_count = 1
- node_embedding = [
- Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden
-
- loss = 0
- while node_count <= graph.number_of_nodes():
- node_neighbor = graph.subgraph(
- list(range(node_count))).adjacency_list() # list of lists (first node is zero)
- node_neighbor_new = graph.subgraph(list(range(node_count + 1))).adjacency_list()[
- -1] # list of new node's neighbors
-
- # 1 message passing
- # do 2 times message passing
- node_embedding = message_passing(node_neighbor, node_embedding, model)
-
- # 2 graph embedding and new node embedding
- node_embedding_cat = torch.cat(node_embedding, dim=0)
- graph_embedding = calc_graph_embedding(node_embedding_cat, model)
- init_embedding = calc_init_embedding(node_embedding_cat, model)
-
- # 3 f_addnode
- p_addnode = model.f_an(graph_embedding)
- if node_count < graph.number_of_nodes():
- # add node
- node_neighbor.append([])
- node_embedding.append(init_embedding)
- if is_fast:
- node_embedding_cat = torch.cat(node_embedding, dim=0)
- # calc loss
- loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.ones((1, 1))).cuda())
- # loss_addnode_step.backward(retain_graph=True)
- loss += loss_addnode_step
- loss_addnode += loss_addnode_step.data
- else:
- # calc loss
- loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.zeros((1, 1))).cuda())
- # loss_addnode_step.backward(retain_graph=True)
- loss += loss_addnode_step
- loss_addnode += loss_addnode_step.data
- break
-
- edge_count = 0
- while edge_count <= len(node_neighbor_new):
- if not is_fast:
- node_embedding = message_passing(node_neighbor, node_embedding, model)
- node_embedding_cat = torch.cat(node_embedding, dim=0)
- graph_embedding = calc_graph_embedding(node_embedding_cat, model)
-
- # 4 f_addedge
- p_addedge = model.f_ae(graph_embedding)
-
- if edge_count < len(node_neighbor_new):
- # calc loss
- loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.ones((1, 1))).cuda())
- # loss_addedge_step.backward(retain_graph=True)
- loss += loss_addedge_step
- loss_addedge += loss_addedge_step.data
-
- # 5 f_nodes
- # excluding the last node (which is the new node)
- node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
- node_embedding_cat.size(1))
- s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
- p_node = F.softmax(s_node.permute(1, 0))
- # get ground truth
- a_node = torch.zeros((1, p_node.size(1)))
- # print('node_neighbor_new',node_neighbor_new, edge_count)
- a_node[0, node_neighbor_new[edge_count]] = 1
- a_node = Variable(a_node).cuda()
- # add edge
- node_neighbor[-1].append(node_neighbor_new[edge_count])
- node_neighbor[node_neighbor_new[edge_count]].append(len(node_neighbor) - 1)
- # calc loss
- loss_node_step = F.binary_cross_entropy(p_node, a_node)
- # loss_node_step.backward(retain_graph=True)
- loss += loss_node_step
- loss_node += loss_node_step.data
-
- else:
- # calc loss
- loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.zeros((1, 1))).cuda())
- # loss_addedge_step.backward(retain_graph=True)
- loss += loss_addedge_step
- loss_addedge += loss_addedge_step.data
- break
-
- edge_count += 1
- node_count += 1
-
- # update deterministic and lstm
- loss.backward()
- optimizer.step()
- scheduler.step()
-
- loss_all = loss_addnode + loss_addedge + loss_node
-
- if epoch % args.epochs_log == 0:
- print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, hidden: {}'.format(
- epoch, args.epochs, loss_all, args.graph_type, args.node_embedding_size))
-
- # loss_sum += loss.data[0]*x.size(0)
- # return loss_sum
-
-
- def test_DGMG_epoch(args, model, is_fast=False):
- model.eval()
- graph_num = args.test_graph_num
-
- graphs_generated = []
- for i in range(graph_num):
- # NOTE: when starting loop, we assume a node has already been generated
- node_neighbor = [[]] # list of lists (first node is zero)
- node_embedding = [
- Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden
-
- node_count = 1
- while node_count <= args.max_num_node:
- # 1 message passing
- # do 2 times message passing
- node_embedding = message_passing(node_neighbor, node_embedding, model)
-
- # 2 graph embedding and new node embedding
- node_embedding_cat = torch.cat(node_embedding, dim=0)
- graph_embedding = calc_graph_embedding(node_embedding_cat, model)
- init_embedding = calc_init_embedding(node_embedding_cat, model)
-
- # 3 f_addnode
- p_addnode = model.f_an(graph_embedding)
- a_addnode = sample_tensor(p_addnode)
- # print(a_addnode.data[0][0])
- if a_addnode.data[0][0] == 1:
- # print('add node')
- # add node
- node_neighbor.append([])
- node_embedding.append(init_embedding)
- if is_fast:
- node_embedding_cat = torch.cat(node_embedding, dim=0)
- else:
- break
-
- edge_count = 0
- while edge_count < args.max_num_node:
- if not is_fast:
- node_embedding = message_passing(node_neighbor, node_embedding, model)
- node_embedding_cat = torch.cat(node_embedding, dim=0)
- graph_embedding = calc_graph_embedding(node_embedding_cat, model)
-
- # 4 f_addedge
- p_addedge = model.f_ae(graph_embedding)
- a_addedge = sample_tensor(p_addedge)
- # print(a_addedge.data[0][0])
-
- if a_addedge.data[0][0] == 1:
- # print('add edge')
- # 5 f_nodes
- # excluding the last node (which is the new node)
- node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
- node_embedding_cat.size(1))
- s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
- p_node = F.softmax(s_node.permute(1, 0))
- a_node = gumbel_softmax(p_node, temperature=0.01)
- _, a_node_id = a_node.topk(1)
- a_node_id = int(a_node_id.data[0][0])
- # add edge
- node_neighbor[-1].append(a_node_id)
- node_neighbor[a_node_id].append(len(node_neighbor) - 1)
- else:
- break
-
- edge_count += 1
- node_count += 1
- # save graph
- node_neighbor_dict = dict(zip(list(range(len(node_neighbor))), node_neighbor))
- graph = nx.from_dict_of_lists(node_neighbor_dict)
- graphs_generated.append(graph)
-
- return graphs_generated
-
-
- def test_DGMG_2(args, model, test_graph, is_fast=False):
- model.eval()
- graph_num = args.test_graph_num
-
- graphs_generated = []
- # for i in range(graph_num):
- # NOTE: when starting loop, we assume a node has already been generated
- node_neighbor = [[]] # list of lists (first node is zero)
- node_embedding = [
- Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden
-
- node_max = len(test_graph.nodes())
- node_count = 1
- while node_count <= node_max:
- # 1 message passing
- # do 2 times message passing
- node_embedding = message_passing(node_neighbor, node_embedding, model)
-
- # 2 graph embedding and new node embedding
- node_embedding_cat = torch.cat(node_embedding, dim=0)
- graph_embedding = calc_graph_embedding(node_embedding_cat, model)
- init_embedding = calc_init_embedding(node_embedding_cat, model)
-
- # 3 f_addnode
- p_addnode = model.f_an(graph_embedding)
- a_addnode = sample_tensor(p_addnode)
-
- if a_addnode.data[0][0] == 1:
- # add node
- node_neighbor.append([])
- node_embedding.append(init_embedding)
- if is_fast:
- node_embedding_cat = torch.cat(node_embedding, dim=0)
- else:
- break
-
- edge_count = 0
- while edge_count < args.max_num_node:
- if not is_fast:
- node_embedding = message_passing(node_neighbor, node_embedding, model)
- node_embedding_cat = torch.cat(node_embedding, dim=0)
- graph_embedding = calc_graph_embedding(node_embedding_cat, model)
-
- # 4 f_addedge
- p_addedge = model.f_ae(graph_embedding)
- a_addedge = sample_tensor(p_addedge)
-
- if a_addedge.data[0][0] == 1:
- # 5 f_nodes
- # excluding the last node (which is the new node)
- node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
- node_embedding_cat.size(1))
- s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
- p_node = F.softmax(s_node.permute(1, 0))
- a_node = gumbel_softmax(p_node, temperature=0.01)
- _, a_node_id = a_node.topk(1)
- a_node_id = int(a_node_id.data[0][0])
- # add edge
-
- node_neighbor[-1].append(a_node_id)
- node_neighbor[a_node_id].append(len(node_neighbor) - 1)
- else:
- break
-
- edge_count += 1
- node_count += 1
-
- # clear node_neighbor and build it again
- node_neighbor = []
- for n in range(node_max):
- temp_neighbor = [k for k in test_graph.edge[n]]
- node_neighbor.append(temp_neighbor)
-
- # now add the last node for real
- # 1 message passing
- # do 2 times message passing
- try:
- node_embedding = message_passing(node_neighbor, node_embedding, model)
-
- # 2 graph embedding and new node embedding
- node_embedding_cat = torch.cat(node_embedding, dim=0)
- graph_embedding = calc_graph_embedding(node_embedding_cat, model)
- init_embedding = calc_init_embedding(node_embedding_cat, model)
-
- # 3 f_addnode
- p_addnode = model.f_an(graph_embedding)
- a_addnode = sample_tensor(p_addnode)
-
- if a_addnode.data[0][0] == 1:
- # add node
- node_neighbor.append([])
- node_embedding.append(init_embedding)
- if is_fast:
- node_embedding_cat = torch.cat(node_embedding, dim=0)
-
- edge_count = 0
- while edge_count < args.max_num_node:
- if not is_fast:
- node_embedding = message_passing(node_neighbor, node_embedding, model)
- node_embedding_cat = torch.cat(node_embedding, dim=0)
- graph_embedding = calc_graph_embedding(node_embedding_cat, model)
-
- # 4 f_addedge
- p_addedge = model.f_ae(graph_embedding)
- a_addedge = sample_tensor(p_addedge)
-
- if a_addedge.data[0][0] == 1:
- # 5 f_nodes
- # excluding the last node (which is the new node)
- node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
- node_embedding_cat.size(1))
- s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
- p_node = F.softmax(s_node.permute(1, 0))
- a_node = gumbel_softmax(p_node, temperature=0.01)
- _, a_node_id = a_node.topk(1)
- a_node_id = int(a_node_id.data[0][0])
- # add edge
-
- node_neighbor[-1].append(a_node_id)
- node_neighbor[a_node_id].append(len(node_neighbor) - 1)
- else:
- break
-
- edge_count += 1
- node_count += 1
- except:
- print('error')
- # save graph
- node_neighbor_dict = dict(zip(list(range(len(node_neighbor))), node_neighbor))
- graph = nx.from_dict_of_lists(node_neighbor_dict)
- graphs_generated.append(graph)
-
- return graphs_generated
-
-
- ########### train function for LSTM + VAE
- def train_DGMG(args, dataset_train, model):
- # check if load existing model
- if args.load:
- fname = args.model_save_path + args.fname + 'model_' + str(args.load_epoch) + '.dat'
- model.load_state_dict(torch.load(fname))
-
- args.lr = 0.00001
- epoch = args.load_epoch
- print('model loaded!, lr: {}'.format(args.lr))
- else:
- epoch = 1
-
- # initialize optimizer
- optimizer = optim.Adam(list(model.parameters()), lr=args.lr)
-
- scheduler = MultiStepLR(optimizer, milestones=args.milestones, gamma=args.lr_rate)
-
- # start main loop
- time_all = np.zeros(args.epochs)
- while epoch <= args.epochs:
- time_start = tm.time()
- # train
- train_DGMG_epoch(epoch, args, model, dataset_train, optimizer, scheduler, is_fast=args.is_fast)
- time_end = tm.time()
- time_all[epoch - 1] = time_end - time_start
- print('time used', time_all[epoch - 1])
- # test
- if epoch % args.epochs_test == 0 and epoch >= args.epochs_test_start:
- graphs = test_DGMG_epoch(args, model, is_fast=args.is_fast)
- fname = args.graph_save_path + args.fname_pred + str(epoch) + '.dat'
- save_graph_list(graphs, fname)
- # print('test done, graphs saved')
-
- # save model checkpoint
- if args.save:
- if epoch % args.epochs_save == 0:
- fname = args.model_save_path + args.fname + 'model_' + str(epoch) + '.dat'
- torch.save(model.state_dict(), fname)
- epoch += 1
- np.save(args.timing_save_path + args.fname, time_all)
-
-
- def neigh_to_mat(neigh, size):
- ret_list = np.zeros(size)
- for i in neigh:
- ret_list[i] = 1
- return ret_list
-
-
- def calc_lable_result(test_graphs, returned_graphs):
- labels = []
- results = []
- i = 0
- for test_graph in test_graphs:
- n = len(test_graph.nodes())
- returned_graph = returned_graphs[i]
- label = neigh_to_mat([k for k in test_graph.edge[n - 1]], n)
- try:
- result = neigh_to_mat([k for k in returned_graph.edge[n - 1]], n)
- except:
- result = np.zeros(n)
- labels.append(label)
- results.append(result)
- i += 1
- return labels, results
-
-
- def evaluate(labels, results):
- mae_list = []
- roc_score_list = []
- ap_score_list = []
- precision_list = []
- recall_list = []
- iter = 0
- for result in results:
- label = labels[iter]
- iter += 1
- part1 = label[result == 1]
- part2 = part1[part1 == 1]
- part3 = part1[part1 == 0]
- part4 = label[result == 0]
- part5 = part4[part4 == 1]
- tp = len(part2)
- fp = len(part3)
- fn = part5.sum()
- if tp + fp > 0:
- precision = tp / (tp + fp)
- else:
- precision = 0
- recall = tp / (tp + fn)
- precision_list.append(precision)
- recall_list.append(recall)
-
- positive = result[label == 1]
- if len(positive) <= len(list(result[label == 0])):
- negative = random.sample(list(result[label == 0]), len(positive))
- else:
- negative = result[label == 0]
- positive = random.sample(list(result[label == 1]), len(negative))
- preds_all = np.hstack([positive, negative])
- labels_all = np.hstack([np.ones(len(positive)), np.zeros(len(positive))])
-
- if len(labels_all) > 0:
- roc_score = roc_auc_score(labels_all, preds_all)
- ap_score = average_precision_score(labels_all, preds_all)
-
- roc_score_list.append(roc_score)
- ap_score_list.append(ap_score)
-
- mae = 0
- for x in range(len(result)):
- if result[x] != label[x]:
- mae += 1
-
- mae = mae / len(label)
- mae_list.append(mae)
-
- mean_roc = mean(roc_score_list)
- mean_ap = mean(ap_score_list)
- mean_precision = mean(precision_list)
- mean_recall = mean(recall_list)
- mean_mae = mean(mae_list)
- print('roc_score ' + str(mean_roc))
- print('ap_score ' + str(mean_ap))
- print('precision ' + str(mean_precision))
- print('recall ' + str(mean_recall))
- print('mae ' + str(mean_mae))
- return mean_roc, mean_ap, mean_precision, mean_recall
-
-
- if __name__ == '__main__':
-
- args = Args_DGMG()
- os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda)
- print('CUDA', args.cuda)
- print('File name prefix', args.fname)
-
- graphs = []
- for i in range(4, 10):
- graphs.append(nx.ladder_graph(i))
- model = DGM_graphs(h_size=args.node_embedding_size).cuda()
-
- if args.graph_type == 'grid_small':
- graphs = []
- for i in range(2, 3):
- for j in range(2, 4):
- graphs.append(nx.grid_2d_graph(i, j))
- args.max_prev_node = 5
-
- # remove self loops
- for graph in graphs:
- edges_with_selfloops = graph.selfloop_edges()
- if len(edges_with_selfloops) > 0:
- graph.remove_edges_from(edges_with_selfloops)
-
- # split datasets
- random.seed(123)
- shuffle(graphs)
- # graphs_len = len(graphs)
- # graphs_test = graphs[int(0.8 * graphs_len):]
- # graphs_validate = graphs[int(0.7 * graphs_len):int(0.8 * graphs_len)]
- # graphs_train = graphs[0:int(0.7 * graphs_len)]
-
- args.max_num_node = max([graphs[i].number_of_nodes() for i in range(len(graphs))])
-
- print('max number node: {}'.format(args.max_num_node))
- print('max previous node: {}'.format(args.max_prev_node))
- test_graph = nx.grid_2d_graph(2, 3)
- test_graph.remove_node(test_graph.nodes()[5])
- train_DGMG(args, graphs, model)
-
- test_graph = nx.convert_node_labels_to_integers(test_graph)
- test_DGMG_2(args, model, test_graph)
-
- labels, results = calc_lable_result(test_graphs, eval_graphs)
-
- evaluate(labels, results)
|