Browse Source

add evaluation

master
Ali Amiri 5 years ago
parent
commit
2a366a282d
1 changed files with 223 additions and 123 deletions
  1. 223
    123
      main_DeepGMG.py

+ 223
- 123
main_DeepGMG.py View File

@@ -1,6 +1,13 @@
# an implementation for "Learning Deep Generative Models of Graphs"
import os

import random
from statistics import mean

import networkx as nx
import numpy as np
from sklearn.metrics import roc_auc_score, average_precision_score

from main import *


@@ -264,132 +271,132 @@ def test_DGMG_2(args, model, test_graph, is_fast=False):
graph_num = args.test_graph_num

graphs_generated = []
for i in range(graph_num):
# NOTE: when starting loop, we assume a node has already been generated
node_neighbor = [[]] # list of lists (first node is zero)
node_embedding = [
Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden

node_max = len(test_graph.nodes())
node_count = 1
while node_count <= node_max:
# 1 message passing
# do 2 times message passing
node_embedding = message_passing(node_neighbor, node_embedding, model)

# 2 graph embedding and new node embedding
node_embedding_cat = torch.cat(node_embedding, dim=0)
graph_embedding = calc_graph_embedding(node_embedding_cat, model)
init_embedding = calc_init_embedding(node_embedding_cat, model)

# 3 f_addnode
p_addnode = model.f_an(graph_embedding)
a_addnode = sample_tensor(p_addnode)

if a_addnode.data[0][0] == 1:
# add node
node_neighbor.append([])
node_embedding.append(init_embedding)
if is_fast:
node_embedding_cat = torch.cat(node_embedding, dim=0)
else:
break

edge_count = 0
while edge_count < args.max_num_node:
if not is_fast:
node_embedding = message_passing(node_neighbor, node_embedding, model)
node_embedding_cat = torch.cat(node_embedding, dim=0)
graph_embedding = calc_graph_embedding(node_embedding_cat, model)

# 4 f_addedge
p_addedge = model.f_ae(graph_embedding)
a_addedge = sample_tensor(p_addedge)

if a_addedge.data[0][0] == 1:
# 5 f_nodes
# excluding the last node (which is the new node)
node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
node_embedding_cat.size(1))
s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
p_node = F.softmax(s_node.permute(1, 0))
a_node = gumbel_softmax(p_node, temperature=0.01)
_, a_node_id = a_node.topk(1)
a_node_id = int(a_node_id.data[0][0])
# add edge

node_neighbor[-1].append(a_node_id)
node_neighbor[a_node_id].append(len(node_neighbor) - 1)
else:
break

edge_count += 1
node_count += 1

# clear node_neighbor and build it again
node_neighbor = []
for n in range(node_max):
temp_neighbor = [k for k in test_graph.edge[n]]
node_neighbor.append(temp_neighbor)

# now add the last node for real
# for i in range(graph_num):
# NOTE: when starting loop, we assume a node has already been generated
node_neighbor = [[]] # list of lists (first node is zero)
node_embedding = [
Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden

node_max = len(test_graph.nodes())
node_count = 1
while node_count <= node_max:
# 1 message passing
# do 2 times message passing
try:
node_embedding = message_passing(node_neighbor, node_embedding, model)

# 2 graph embedding and new node embedding
node_embedding_cat = torch.cat(node_embedding, dim=0)
graph_embedding = calc_graph_embedding(node_embedding_cat, model)
init_embedding = calc_init_embedding(node_embedding_cat, model)

# 3 f_addnode
p_addnode = model.f_an(graph_embedding)
a_addnode = sample_tensor(p_addnode)

if a_addnode.data[0][0] == 1:
# add node
node_neighbor.append([])
node_embedding.append(init_embedding)
if is_fast:
node_embedding_cat = torch.cat(node_embedding, dim=0)

edge_count = 0
while edge_count < args.max_num_node:
if not is_fast:
node_embedding = message_passing(node_neighbor, node_embedding, model)
node_embedding_cat = torch.cat(node_embedding, dim=0)
graph_embedding = calc_graph_embedding(node_embedding_cat, model)

# 4 f_addedge
p_addedge = model.f_ae(graph_embedding)
a_addedge = sample_tensor(p_addedge)

if a_addedge.data[0][0] == 1:
# 5 f_nodes
# excluding the last node (which is the new node)
node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
node_embedding_cat.size(1))
s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
p_node = F.softmax(s_node.permute(1, 0))
a_node = gumbel_softmax(p_node, temperature=0.01)
_, a_node_id = a_node.topk(1)
a_node_id = int(a_node_id.data[0][0])
# add edge
node_embedding = message_passing(node_neighbor, node_embedding, model)

# 2 graph embedding and new node embedding
node_embedding_cat = torch.cat(node_embedding, dim=0)
graph_embedding = calc_graph_embedding(node_embedding_cat, model)
init_embedding = calc_init_embedding(node_embedding_cat, model)

# 3 f_addnode
p_addnode = model.f_an(graph_embedding)
a_addnode = sample_tensor(p_addnode)

if a_addnode.data[0][0] == 1:
# add node
node_neighbor.append([])
node_embedding.append(init_embedding)
if is_fast:
node_embedding_cat = torch.cat(node_embedding, dim=0)
else:
break

edge_count = 0
while edge_count < args.max_num_node:
if not is_fast:
node_embedding = message_passing(node_neighbor, node_embedding, model)
node_embedding_cat = torch.cat(node_embedding, dim=0)
graph_embedding = calc_graph_embedding(node_embedding_cat, model)

# 4 f_addedge
p_addedge = model.f_ae(graph_embedding)
a_addedge = sample_tensor(p_addedge)

if a_addedge.data[0][0] == 1:
# 5 f_nodes
# excluding the last node (which is the new node)
node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
node_embedding_cat.size(1))
s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
p_node = F.softmax(s_node.permute(1, 0))
a_node = gumbel_softmax(p_node, temperature=0.01)
_, a_node_id = a_node.topk(1)
a_node_id = int(a_node_id.data[0][0])
# add edge

node_neighbor[-1].append(a_node_id)
node_neighbor[a_node_id].append(len(node_neighbor) - 1)
else:
break

node_neighbor[-1].append(a_node_id)
node_neighbor[a_node_id].append(len(node_neighbor) - 1)
else:
break
edge_count += 1
node_count += 1

# clear node_neighbor and build it again
node_neighbor = []
for n in range(node_max):
temp_neighbor = [k for k in test_graph.edge[n]]
node_neighbor.append(temp_neighbor)

# now add the last node for real
# 1 message passing
# do 2 times message passing
try:
node_embedding = message_passing(node_neighbor, node_embedding, model)

# 2 graph embedding and new node embedding
node_embedding_cat = torch.cat(node_embedding, dim=0)
graph_embedding = calc_graph_embedding(node_embedding_cat, model)
init_embedding = calc_init_embedding(node_embedding_cat, model)

# 3 f_addnode
p_addnode = model.f_an(graph_embedding)
a_addnode = sample_tensor(p_addnode)

if a_addnode.data[0][0] == 1:
# add node
node_neighbor.append([])
node_embedding.append(init_embedding)
if is_fast:
node_embedding_cat = torch.cat(node_embedding, dim=0)

edge_count = 0
while edge_count < args.max_num_node:
if not is_fast:
node_embedding = message_passing(node_neighbor, node_embedding, model)
node_embedding_cat = torch.cat(node_embedding, dim=0)
graph_embedding = calc_graph_embedding(node_embedding_cat, model)

# 4 f_addedge
p_addedge = model.f_ae(graph_embedding)
a_addedge = sample_tensor(p_addedge)

if a_addedge.data[0][0] == 1:
# 5 f_nodes
# excluding the last node (which is the new node)
node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1,
node_embedding_cat.size(1))
s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1))
p_node = F.softmax(s_node.permute(1, 0))
a_node = gumbel_softmax(p_node, temperature=0.01)
_, a_node_id = a_node.topk(1)
a_node_id = int(a_node_id.data[0][0])
# add edge

node_neighbor[-1].append(a_node_id)
node_neighbor[a_node_id].append(len(node_neighbor) - 1)
else:
break

edge_count += 1
node_count += 1
except:
print('error')
# save graph
node_neighbor_dict = dict(zip(list(range(len(node_neighbor))), node_neighbor))
graph = nx.from_dict_of_lists(node_neighbor_dict)
graphs_generated.append(graph)
edge_count += 1
node_count += 1
except:
print('error')
# save graph
node_neighbor_dict = dict(zip(list(range(len(node_neighbor))), node_neighbor))
graph = nx.from_dict_of_lists(node_neighbor_dict)
graphs_generated.append(graph)

return graphs_generated

@@ -437,7 +444,96 @@ def train_DGMG(args, dataset_train, model):
np.save(args.timing_save_path + args.fname, time_all)


def neigh_to_mat(neigh, size):
ret_list = np.zeros(size)
for i in neigh:
ret_list[i] = 1
return ret_list


def calc_lable_result(test_graphs, returned_graphs):
labels = []
results = []
i = 0
for test_graph in test_graphs:
n = len(test_graph.nodes())
returned_graph = returned_graphs[i]
label = neigh_to_mat([k for k in test_graph.edge[n - 1]], n)
try:
result = neigh_to_mat([k for k in returned_graph.edge[n - 1]], n)
except:
result = np.zeros(n)
labels.append(label)
results.append(result)
i += 1
return labels, results


def evaluate(labels, results):
mae_list = []
roc_score_list = []
ap_score_list = []
precision_list = []
recall_list = []
iter = 0
for result in results:
label = labels[iter]
iter += 1
part1 = label[result == 1]
part2 = part1[part1 == 1]
part3 = part1[part1 == 0]
part4 = label[result == 0]
part5 = part4[part4 == 1]
tp = len(part2)
fp = len(part3)
fn = part5.sum()
if tp + fp > 0:
precision = tp / (tp + fp)
else:
precision = 0
recall = tp / (tp + fn)
precision_list.append(precision)
recall_list.append(recall)

positive = result[label == 1]
if len(positive) <= len(list(result[label == 0])):
negative = random.sample(list(result[label == 0]), len(positive))
else:
negative = result[label == 0]
positive = random.sample(list(result[label == 1]), len(negative))
preds_all = np.hstack([positive, negative])
labels_all = np.hstack([np.ones(len(positive)), np.zeros(len(positive))])

if len(labels_all) > 0:
roc_score = roc_auc_score(labels_all, preds_all)
ap_score = average_precision_score(labels_all, preds_all)

roc_score_list.append(roc_score)
ap_score_list.append(ap_score)

mae = 0
for x in range(len(result)):
if result[x] != label[x]:
mae += 1

mae = mae / len(label)
mae_list.append(mae)

mean_roc = mean(roc_score_list)
mean_ap = mean(ap_score_list)
mean_precision = mean(precision_list)
mean_recall = mean(recall_list)
mean_mae = mean(mae_list)
print('roc_score ' + str(mean_roc))
print('ap_score ' + str(mean_ap))
print('precision ' + str(mean_precision))
print('recall ' + str(mean_recall))
print('mae ' + str(mean_mae))
return mean_roc, mean_ap, mean_precision, mean_recall


if __name__ == '__main__':

args = Args_DGMG()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda)
print('CUDA', args.cuda)
@@ -453,7 +549,7 @@ if __name__ == '__main__':
for i in range(2, 3):
for j in range(2, 4):
graphs.append(nx.grid_2d_graph(i, j))
args.max_prev_node = 6
args.max_prev_node = 5

# remove self loops
for graph in graphs:
@@ -479,3 +575,7 @@ if __name__ == '__main__':

test_graph = nx.convert_node_labels_to_integers(test_graph)
test_DGMG_2(args, model, test_graph)

labels, results = calc_lable_result(test_graphs, eval_graphs)

evaluate(labels, results)

Loading…
Cancel
Save