|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 |
- import numpy as np
- import matplotlib as mpl
- import matplotlib.pyplot as plt
- import seaborn as sns
-
- sns.set()
- sns.set_style("ticks")
- sns.set_context("poster",font_scale=1.28,rc={"lines.linewidth": 3})
-
- ### plot robustness result
- noise = np.array([0,0.2,0.4,0.6,0.8,1.0])
- MLP_degree = np.array([0.3440, 0.1365, 0.0663, 0.0430, 0.0214, 0.0201])
- RNN_degree = np.array([0.5, 0.5, 0.5, 0.5, 0.5, 0.5])
- BA_degree = np.array([0.0892,0.3558,1.1754,1.5914,1.7037,1.7502])
- Gnp_degree = np.array([1.7115,1.5536,0.5529,0.1433,0.0725,0.0503])
-
- MLP_clustering = np.array([0.0096, 0.0056, 0.0027, 0.0020, 0.0012, 0.0028])
- RNN_clustering = np.array([0.5, 0.5, 0.5, 0.5, 0.5, 0.5])
- BA_clustering = np.array([0.0255,0.0881,0.3433,0.4237,0.6041,0.7851])
- Gnp_clustering = np.array([0.7683,0.1849,0.1081,0.0146,0.0210,0.0329])
-
-
- plt.plot(noise,Gnp_degree)
- plt.plot(noise,BA_degree)
- plt.plot(noise, MLP_degree)
- # plt.plot(noise, RNN_degree)
-
- # plt.rc('text', usetex=True)
- plt.legend(['E-R','B-A','GraphRNN'])
- plt.xlabel('Noise level')
- plt.ylabel('MMD degree')
-
- plt.tight_layout()
- plt.savefig('figures_paper/robustness_degree.png',dpi=300)
- plt.close()
-
- plt.plot(noise,Gnp_clustering)
- plt.plot(noise,BA_clustering)
- plt.plot(noise, MLP_clustering)
- # plt.plot(noise, RNN_clustering)
- plt.legend(['E-R','B-A','GraphRNN'])
- plt.xlabel('Noise level')
- plt.ylabel('MMD clustering')
-
- plt.tight_layout()
- plt.savefig('figures_paper/robustness_clustering.png',dpi=300)
- plt.close()
-
-
-
|