|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- import concurrent.futures
- from functools import partial
- import networkx as nx
- import numpy as np
- from scipy.linalg import toeplitz
- import pyemd
-
- def emd(x, y, distance_scaling=1.0):
- support_size = max(len(x), len(y))
- d_mat = toeplitz(range(support_size)).astype(np.float)
- distance_mat = d_mat / distance_scaling
-
- # convert histogram values x and y to float, and make them equal len
- x = x.astype(np.float)
- y = y.astype(np.float)
- if len(x) < len(y):
- x = np.hstack((x, [0.0] * (support_size - len(x))))
- elif len(y) < len(x):
- y = np.hstack((y, [0.0] * (support_size - len(y))))
-
- emd = pyemd.emd(x, y, distance_mat)
- return emd
-
- def l2(x, y):
- dist = np.linalg.norm(x - y, 2)
- return dist
-
-
- def gaussian_emd(x, y, sigma=1.0, distance_scaling=1.0):
- ''' Gaussian kernel with squared distance in exponential term replaced by EMD
- Args:
- x, y: 1D pmf of two distributions with the same support
- sigma: standard deviation
- '''
- support_size = max(len(x), len(y))
- d_mat = toeplitz(range(support_size)).astype(np.float)
- distance_mat = d_mat / distance_scaling
-
- # convert histogram values x and y to float, and make them equal len
- x = x.astype(np.float)
- y = y.astype(np.float)
- if len(x) < len(y):
- x = np.hstack((x, [0.0] * (support_size - len(x))))
- elif len(y) < len(x):
- y = np.hstack((y, [0.0] * (support_size - len(y))))
-
- emd = pyemd.emd(x, y, distance_mat)
- return np.exp(-emd * emd / (2 * sigma * sigma))
-
- def gaussian(x, y, sigma=1.0):
- dist = np.linalg.norm(x - y, 2)
- return np.exp(-dist * dist / (2 * sigma * sigma))
-
- def kernel_parallel_unpacked(x, samples2, kernel):
- d = 0
- for s2 in samples2:
- d += kernel(x, s2)
- return d
-
- def kernel_parallel_worker(t):
- return kernel_parallel_unpacked(*t)
-
- def disc(samples1, samples2, kernel, is_parallel=True, *args, **kwargs):
- ''' Discrepancy between 2 samples
- '''
- d = 0
- if not is_parallel:
- for s1 in samples1:
- for s2 in samples2:
- d += kernel(s1, s2, *args, **kwargs)
- else:
- with concurrent.futures.ProcessPoolExecutor() as executor:
- for dist in executor.map(kernel_parallel_worker,
- [(s1, samples2, partial(kernel, *args, **kwargs)) for s1 in samples1]):
- d += dist
- d /= len(samples1) * len(samples2)
- return d
-
-
- def compute_mmd(samples1, samples2, kernel, is_hist=True, *args, **kwargs):
- ''' MMD between two samples
- '''
- # normalize histograms into pmf
- if is_hist:
- samples1 = [s1 / np.sum(s1) for s1 in samples1]
- samples2 = [s2 / np.sum(s2) for s2 in samples2]
- # print('===============================')
- # print('s1: ', disc(samples1, samples1, kernel, *args, **kwargs))
- # print('--------------------------')
- # print('s2: ', disc(samples2, samples2, kernel, *args, **kwargs))
- # print('--------------------------')
- # print('cross: ', disc(samples1, samples2, kernel, *args, **kwargs))
- # print('===============================')
- return disc(samples1, samples1, kernel, *args, **kwargs) + \
- disc(samples2, samples2, kernel, *args, **kwargs) - \
- 2 * disc(samples1, samples2, kernel, *args, **kwargs)
-
- def compute_emd(samples1, samples2, kernel, is_hist=True, *args, **kwargs):
- ''' EMD between average of two samples
- '''
- # normalize histograms into pmf
- if is_hist:
- samples1 = [np.mean(samples1)]
- samples2 = [np.mean(samples2)]
- # print('===============================')
- # print('s1: ', disc(samples1, samples1, kernel, *args, **kwargs))
- # print('--------------------------')
- # print('s2: ', disc(samples2, samples2, kernel, *args, **kwargs))
- # print('--------------------------')
- # print('cross: ', disc(samples1, samples2, kernel, *args, **kwargs))
- # print('===============================')
- return disc(samples1, samples2, kernel, *args, **kwargs),[samples1[0],samples2[0]]
-
-
- def test():
- s1 = np.array([0.2, 0.8])
- s2 = np.array([0.3, 0.7])
- samples1 = [s1, s2]
-
- s3 = np.array([0.25, 0.75])
- s4 = np.array([0.35, 0.65])
- samples2 = [s3, s4]
-
- s5 = np.array([0.8, 0.2])
- s6 = np.array([0.7, 0.3])
- samples3 = [s5, s6]
-
- print('between samples1 and samples2: ', compute_mmd(samples1, samples2, kernel=gaussian_emd,
- is_parallel=False, sigma=1.0))
- print('between samples1 and samples3: ', compute_mmd(samples1, samples3, kernel=gaussian_emd,
- is_parallel=False, sigma=1.0))
-
- if __name__ == '__main__':
- test()
-
|