You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.txt 2.0KB

6 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. README for dataset PROTEINS_full
  2. === Usage ===
  3. This folder contains the following comma separated text files
  4. (replace DS by the name of the dataset):
  5. n = total number of nodes
  6. m = total number of edges
  7. N = number of graphs
  8. (1) DS_A.txt (m lines)
  9. sparse (block diagonal) adjacency matrix for all graphs,
  10. each line corresponds to (row, col) resp. (node_id, node_id)
  11. (2) DS_graph_indicator.txt (n lines)
  12. column vector of graph identifiers for all nodes of all graphs,
  13. the value in the i-th line is the graph_id of the node with node_id i
  14. (3) DS_graph_labels.txt (N lines)
  15. class labels for all graphs in the dataset,
  16. the value in the i-th line is the class label of the graph with graph_id i
  17. (4) DS_node_labels.txt (n lines)
  18. column vector of node labels,
  19. the value in the i-th line corresponds to the node with node_id i
  20. There are OPTIONAL files if the respective information is available:
  21. (5) DS_edge_labels.txt (m lines; same size as DS_A_sparse.txt)
  22. labels for the edges in DS_A_sparse.txt
  23. (6) DS_edge_attributes.txt (m lines; same size as DS_A.txt)
  24. attributes for the edges in DS_A.txt
  25. (7) DS_node_attributes.txt (n lines)
  26. matrix of node attributes,
  27. the comma seperated values in the i-th line is the attribute vector of the node with node_id i
  28. (8) DS_graph_attributes.txt (N lines)
  29. regression values for all graphs in the dataset,
  30. the value in the i-th line is the attribute of the graph with graph_id i
  31. === Previous Use of the Dataset ===
  32. Neumann, M., Garnett R., Bauckhage Ch., Kersting K.: Propagation Kernels: Efficient Graph
  33. Kernels from Propagated Information. Under review at MLJ.
  34. === References ===
  35. K. M. Borgwardt, C. S. Ong, S. Schoenauer, S. V. N. Vishwanathan, A. J. Smola, and H. P.
  36. Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(Suppl 1):i47–i56,
  37. Jun 2005.
  38. P. D. Dobson and A. J. Doig. Distinguishing enzyme structures from non-enzymes without
  39. alignments. J. Mol. Biol., 330(4):771–783, Jul 2003.